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INn a nutshell

We propose a novel hierarchical reinforcement learning approach (VHRL) for training open-domain dialog systems. Our
approach tunes model decisions at both the word level and utterance level. This provides greater flexibility for tracking
long-term, conversational goals across multiple dialog turns. We optimize for human-centered rewards using HRL and
see significant improvements in terms of both human evaluation and automatic metrics.
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Human Evaluation
 Combine all rewards
* Reward = sentiment + question + toxicity + repetition + semantic similarity
* VHRL leads to higher quality, fluency, Model Quality Fluency Diversity Contingency Total | Chat Len.
total score, and longer chats B Transformer 062 417 3.23 2.34 1236 | 11.28
B REINFORCE (Flat RL) 2.89 4.47 3.67 2.80 13.84 11.60
® VHRED 2.84 4.53 4.43 2.47 14.27 10.94
B VHRL (ours) 291 4.65 4.26 2.67 14.49 12.84




