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What i1s Open-Domain Dialog?

0000 etisalat = 11:23 PM @ 97 73% )

“Siri you need to do a better
job at understanding me”

Goal-oriented systems:
e Do predefined tasks I’ll make a note of that.

“Yeah make a note of that”

* Scripted responses common.

Of that
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What i1s Open-Domain Dialog?

Goal-oriented systems: Open-Domain Dialog

* Do predefined tasks. |Usr]: hello! how are you?

» Scripted responses common. [Bot]: I'm doing well,
how about yourselt?
|Usr]: great! I'm at a conference now.

Open-domain systems: |Bot]: what are you doing there?

L . Usr]: presentine and meeting people!
e Mimic human conversations. [Usr]: p & g Peop

« Here we generate language.
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Limitations of Open-Domain Systems

» Repetitive and dull responses
* No long-term coherence
* |nappropriate and toxic responses

Repetitive Incoherent Inappropriate
'Usr]: hello! |Usr]: what’s your _ .
Bot]: I don’t know. | favorite food? ([:grsé] u tIer 1261812?3711155
‘Usr]: how are you? ‘Bot]: I love food Bo tI])' [ am SOI‘I.‘ -
Bot]: I don’t know ‘Usr]: you like food? hear t.hat Y
what that means. Bot]: no, I don’t '
\%ﬂ
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Solutions?

* Reinforcement Learning!
* Jaques et al. 2019, Shin et al. 2019,
Li et al. 2017, Li et al. 2016, ...

State & Reward
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Reinforcement Learning for Dialog

* Reward positive conversations
* Punish insensitive conversations
* Policy Gradients (REINFORCE):
* Maximize
J(m) = Rymg(response|history) S0l 1 nae e A

I'm domg great! w

g1

Utterance TR
encoder
Word

Word _ B Decoder
encoder

1‘ 1‘ ‘]‘ 1‘ VHRED

Hey there! Hello! How are you? (Serban et al. 2017)
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Reinforcement Learning for Dialog

J(m) = Rymg(response|history)

N

Reward associated Probability of

with response response |
[Q Q] . | hate life (\

I'm domg great! w
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Utterance @WWR

encoder
Word
Word _ 3 Decoder
encoder
1‘ 1‘ ‘]‘ 1‘ VHRED
Hey there! Hello! How are you? (Serban et al. 2017)
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Reinforcement Learning for Dialog

 Environment
 Pretrain on Reddit r/CasualConversation

* Simulate Interactions with self-play

What's up?
* Hello!
How are “
you?
I’'m good

o~
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Hierarchical Reinforcement Learning

e Reward word-level decisions

e Ranzato et al. 2015, Li et al. 2016,
LI et al. 2017, Bahdanau et al. 2017,
Paulus et al. 2017, Yu et al. 2017,
.

Jaques et al. 2019, Ziegler et al. 2019,
and many others! OO — ﬁate e ¢

I'm domg great! w

) _)h

Utterance @¢WWR

encoder
Word _ B Decoder
encoder
A4 A4 VHRED
Hey there! Hello! How are you? (Serban et al. 2017)
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Good conversation doesn’t just
happen at the word level
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Hierarchical Reinforcement Learning

 Better decisions of z
e Better conversation-level control

* Better tracking of long-term dependencies
* Stay on topic, Avoid repetition

——

. New VHRL Objective
J(m) = Ryme(response|history) Hﬁate e Y

doing great! @

-

I'm

)

+ R} pg(z|history) ;

Utterance X __).__)
encoder
Word
Word B Decoder
encoder
A A4 VHRED
Hey there! Hello! How are you? (Serban et al. 2017)
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Hierarchical Reinforcement Learning

Worker
. Manager J(m) = Rymg(response|history)
e Utterance-level decisions Rt pPe (Z‘hIStOTY)
—,_/
 Temporally extended decisions Manager
 \Worker

» Word-level decisions N(p.Z) § | (\’
[@ @] | hate life
 |nteracts with the environment A

I'm domg great! w

Utterance (WA T B h
encoder
Word

Word _ B Decoder
encoder

1‘ 1\ 1‘ 1‘ VHRED

Hey there! Hello! How are you? (Serban et al. 2017)
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The rewards

o Sentiment: DeepMoiji (Felbo et al. 2017). Reward
probabllity of positive emojis ©@ & © ©

* " Question: Reward guestion word and question mark (?)
«. Toxicity: Punish probability of toxic response
| Repetition @ : Punish number of repeated words by bot

" Semantic Similarity @ : Reward cosine similarity with
user input in Universal Sentence Encoder (Cer et al. 2018)
embedding space.
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The rewards

» | Toxicity: Punish probability of toxic response

We want to avoid letting computers be awful to
people just because people are awful to people.
— Robyn Speer
* Avoid mismatched objectives.
Statistical mimicry of language # better interactions
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But does 1t work?

* Optimize for human-centered rewards

=== REINFORCE (Flat RL) == \/HRL === \/HRED = Transformer
Sentiment Question Toxicity Repetition Semantic Sim.
0.5 1.0 0.07 0.5 0.4
-E //
(O
=
()
e
0.0
0.0 | >0 0-0 0.2
0O 100 200 300 400 500 0 20 40 60 0 100 200 300 400 0 100 200 300 0 20 40 60 80 100
Number of steps
Sentiment Question 1 Toxicity 1 Repetition . Semantic Sim. .
. ]:h ? : I ik I
[Ust]: hello [Ust]: hi there! el vowse so st | [Botl: I'ma resemvoir | to.ed sheeran
[Bot]: I'm in my [Bot]: what do you Usrl: yot 1€ 50 stupid .
o Bot]: you're cute engineer [Bot]: and what genre
sunroom a lot and do for fun S . . .o
., ) : 1 read book 'Usr]: I hate you [Usr]: cool. I am still 1S 1t”
it’s a great teeling! Usr]: I read books Botl: but I don’t know - colle ,
: . : DOt ge |Usr]|: pop
[Usr]: sounds fun Bot]: what do you h .
-, . - . : why |Bot]: today 1s my [Bot]: any recommen-
[Bot]: I'm excited! like to do 1n your life? . :
first day of vacation dations?
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HRL Interactive Human Evaluation

« Combine all rewards

* Reward = sentiment + question + toxicity + repetition +
semantic similarity

 VHRL leads to higher quality, fluency, total score, and longer chats

Model Quality Fluency Diversity Contingency  Total | Chat Len.
B Transformer 2.62 4.17 3.23 2.34 12.36 11.28
B REINFORCE (Flat RL) 2.89 4.47 3.67 2.80 13.84 11.60
® VHRED 2.84 4.53 4.43 2.47 14.27 10.94
® VHRL (ours) 291 4.65 4.26 2.67 14.49 12.84
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Future Work

* Would other RL approaches work better?

 Maybe PPO Iinstead of REINFORCE
(Schulman et al. 2017)

 \Would this work for deterministic instead of variational models?

* Opens the door for many other applications
(See DDPG, Silver et al. 2014)

» System 2 Deep Learning (Yoshua Bengio, Tonight)

* Reason over sets or graphs or dialog states?
(Sankar et al. 2019)
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. =
In a nutshell

We propose a novel hierarchical reinforcement learning approach (VHRL) for training open-domain dialog systems. Our
approach tunes model decisions at both the word level and utterance level. This provides greater flexibility for tracking

long-term, conversational goals across multiple dialog turns. We optimize for human-centered rewards using HRL and
see significant improvements in terms of both human evaluation and automatic metrics.
-_—
’ The problem Repetitive | Incoherent | Inappropriate

Maximum likelihood training has limitations: [Usr]: hello! [Ustl:. what's your | 1154 1 am studying
o [Bot]: I don’t know. | favorite food? R £
» Repetitive and dull responses [Usr]: how are you? | [Bot]: I love food c;mp'ut[er'SCleltce,'
« No long-term coherence [Bot]: I don’t know [Usr]: you like food? ll 'mJl-h‘l arili.sorky; 10
9 2 what that means. [Bot]: no, I don’t AERIEEIALs
» Inappropriate and toxic responses @
The solution Hierarchical
Use reinforcement learning to optimize for Reinforcement Learning

human-centered rewards
(e.g. Punish high probability of toxicity)

State & Reward

» Manager: Utterance-level decisions. Temporally extended.
» Worker: Word-level decisions. Interacts with environment.

Worker

J(m) = Rymg(response|history)

, Maw + R, pe(z|history)
4 —_———
- ¢ — & ) | rae e @Y

Dialog System Self-play I'm  doing Q’fa“ @
Utterance
All previous approaches only tune the word level. However: | encoder L
) | n b | Good conversation doesn’t just happen at || < B3 4 Bl
1 ? to1
the word Ievel Hey there! Hello! How are you? VHRED
(Serban et al. 2017)
But does it work? —— REINFORCE (Flat RL) === VHRL = VHRED = Transformer
- . Sentiment Question Toxicity Repetition Semantic Sim.
- - Automatic Evaluation - = = H
°
]
« HRL better for learning global 3 M iﬁﬁi% &
rewards avoiding repetition and > 00 0 00 >
Y % o ¥ & ¥ 0 100 200 300 400 500 o 20 40 60 o 100 200 300 400 0 100 200 300 o 20 40 60 80 100
Improving semantic Slmllarlty. Number of steps
« Automatic metrics don't tell the Sentiment Question ‘ L Toxicity ‘ . Repetition @ I Semantic Sim. @
whole story. The question metric [Ust]: hello! [Ust]: hi there! , _ [USt]: Bowne yout, | MDerk Dketoiisten
can be exploited [Bot]: I'm in my [Bot]: what do you {gﬁﬂl: you're so stupid Lnoi[r]l'eerm arescrvolr ;‘;3:”’ :;:l’ :\nh i g
3 . o o o ot]: you're cute 14 . d vhat genre
.“}nfof:'_““l 1‘“ l‘.md| dG for [m"_? L boioks [Usr]: I hate you [Usr]: cool. T am still is it?
"US.‘.I ;"s‘“ deft(mg. [Bbil: ;‘e“ll‘ | opxs [Bot]: but I don’t know in college [Usr]: pop
[ M]: Squm .sA.un [, O]z parcoyou, .. why [Bot]: today is my [Bot]: any recommen-
[Bot]: I'm excited! like to do in your life? f X : FIEES
rst day of vacation dations?

Human Evaluation
» Combine all rewards
* Reward = sentiment + question + toxicity + repetition + semantic similarity

» VHRL leads to higher quality, fluency, Model
total score, and longer chats

Quality Fluency Diversity Contingency — Total | Chat Len.

B Transformer 2.62 4.17 3.23 2.34 12.36 11.28
B REINFORCE (Flat RL) 2.89 447 3.67 2.80 13.84 11.60
B VHRED 2.84 4.53 443 2.47 14.27 10.94
B VHRL (ours) 291 4.65 4.26 2.67 14.49 12.84
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Questions?

Email I : a saleh@mit.edu

Twitter 9 : @asaleh181
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