
On Variational Autoencoders:

Generative Models for Dimension Reduction

Abdul Saleh

December 14, 2019

1 Introduction

Variational Autoencoders (VAEs) are flexible, deep, generative models that have successfully been applied to
modelling complex distributions. Over the past few years, VAEs have been applied to generating text, human
faces, anime characters, handwritten digits, mesh models, and graphs. VAEs were first proposed as generative
models [5]. This project motivates and analyzes VAEs as dimension reduction algorithms instead. VAEs can
capture complex manifolds and produce flexible, interpretable representations making them an attractive
option for dimension reduction despite being originally designed for generative modelling. We release the code
to reproduce our experiments at https://github.com/AbdulSaleh/dimension-reduction-vae.

2 Method

2.1 Setting

Let X be a dataset of N observations x1, . . . ,xN which are samples of some random variable x ∈ RD. We
assume that this dataset lies close to some manifold defined by the continuous latent variable z ∈ RK . The
data generating process acts in two steps:

1. First, sample a value zi from the prior distribution pθ(z)

2. Then sample an observation xi from the conditional distribution pθ(x|z)

The distribution of x|z comes from a family of distributions parametrized by θ and the distribution of z is
arbitrary. However, we do not get to observe much of this process. The parameters θ and distributions are
unknown, and we are not given the latent variables zi.

2.2 Goals

Our goal in this setting is to find efficient estimates of the parameter θ. This can be divided into three
subgoals:

1. Approximate inference of the marginal distribution of x, given by pθ(x). The data distribution can be
used for many real-world applications such as image denoising or inpainting in computer vision.

2. Approximate inference of the posterior distribution of z|x, given by pθ(z|x), which provides low-
dimensional latent representations of the data and learns the manifold the data lies on.

3. Approximate inference of the generative distribution of x|z, given by pθ(x|z). Along with the latent
variable distribution pθ(z), this allows us to understand and simulate the data generating process
(maybe we are modelling some natural process).

1

https://github.com/AbdulSaleh/dimension-reduction-vae

2.3 Inference as Optimization

We begin by considering our 1st goal of estimating pθ(x). We can attempt to marginalize out z:

p(x) =

∫
pθ(x|z) pθ(z) dz (1)

However, since this integral is intractable, we consider a different approach and focus on our 2nd goal of
estimating pθ(z|x) instead. Let qφ(z|x) be some arbitrary distribution parametrized by φ that we use to
estimate pθ(z|x). The optimal qφ(z|x) is the one that is as close as possible to pθ(z|x) so we want to minimize
the Kullback-Leibler divergence between the two distributions:

DKL

[
qφ(z|x)

∣∣ pθ(z|x)
]

=

∫
qφ(z|x) log

qφ(z|x)

pθ(z|x)
dz (2)

= Eqφ(z|x)

[
log

qφ(z|x)

pθ(z|x)

]
(3)

= Eqφ(z|x)

[
log qφ(z|x)− log pθ(z|x)

]
(4)

where equation 3 follows from the law of the unconscious statistician. Moving forward we assume the
expectation is with respect to qφ(z|x) so we use E instead of Eqφ(z|x). We then use Bayes’ rule to decompose
the term on the right:

DKL

[
qφ(z|x)

∣∣ pθ(z|x)
]

= E
[

log qφ(z|x)− log pθ(z|x)
]

(5)

= E
[

log qφ(z|x)− log
pθ(x|z)pθ(z)

pθ(x)

]
(6)

= E
[

log qφ(z|x)− log pθ(x|z)− log pθ(z)
]

+ log pθ(x) (7)

where log pθ(x) does not depend on z so it can be pushed out of the expectation.
Now rearrange to get:

ELBO︷ ︸︸ ︷
log pθ(x)−DKL

[
qφ(z|x)

∣∣ pθ(z|x)
]

= E
[

log pθ(x|z)−
(

log qφ(z|x) + log pθ(z)
)]

(8)

= E
[

log pθ(x|z)
]
− E

[
log qφ(z|x)− log pθ(z)

]
(9)

= E
[

log pθ(x|z)
]
−DKL

[
qφ(z|x)

∣∣ pθ(z)
]

︸ ︷︷ ︸
SGD objective

(10)

We have arrived at the Evidence Lower BOund (ELBO) which describes the VAE objective function:

L(θ,φ,x) = log pθ(x)−DKL

[
qφ(z|x)

∣∣ pθ(z|x)
]

(11)

The ELBO has multiple intuitive and theoretically appealing interpretations that make it a natural objective
function for VAEs.

Recall our 3rd goal, which involved estimating pθ(x). Now, note that the ELBO is a lower bound on the
probability distribution log pθ(x), since the KL divergence is non-negative:

log pθ(x) ≥ log pθ(x)−DKL

[
qφ(z|x)

∣∣ pθ(z|x)
]︸ ︷︷ ︸

L(θ,φ,x)

(12)

This relationship allows us to formulate the inference of log pθ(x) as an optimization problem. Since it is
difficult to estimate log pθ(x) (as we saw in equation 1), we can instead estimate a lower bound, L(θ,φ,x),
on log pθ(x). If we let qφ(z|x) be some arbitrary distribution over z, the ELBO is equal to the desired
distribution (i.e. L(θ,φ,x) = log pθ(x)) when qφ(z|x) has the same distribution as pθ(z|x), which is when
the KL divergence between the two distributions is 0. In other words, we hope to find a distribution qφ(z|x)
which is as close as possible to pθ(z|x). This is equivalent to maximizing L(θ,φ,x), which leads to a good
estimate of log pθ(x).

2

2.4 SGD Variational Estimator

Unfortunately, it is still unclear how we would calculate the ELBO objective in equation 11 since the
distributions of pθ(x), pθ(z|x) remain unknown. To get around this issue, we rewrite the ELBO in an
alternative, equivalent form (refer to equation 10):

L(θ,φ,x) = E
[

log pθ(x|z)
]

︸ ︷︷ ︸
−1× decoder loss

−DKL

[
qφ(z|x)

∣∣ pθ(z)
]︸ ︷︷ ︸

encoder loss

(13)

We make some modeling assumptions to optimize this objective with stochastic gradient descent (SGD). We
assume that pθ(z) = N (z |~0, I), and qφ(z|x) = N (z |µx,σ

2
x I). More specifically, qφ(z|x) can be viewed as

an encoder which maps each x to a mean µx and diagonal covariance matrix σ2
x I. The latent embedding z

is sampled from the resulting distribution.

Similarly, pθ(x|z) can be viewed as a decoder that uses z to reconstruct x. For example, if we are interested
in decoding [0, 1] images with D pixels we can assume pθ(x|z)j = Bernoulli(xj | pz,j) models the probability
of the jth pixel, xj , being black as opposed to white. Here, pz ∈ RD are probability estimates returned by
the decoder / neural network. Alternatively, if x is outside of the range [0, 1], we can assume pθ(x|z) =
N (x |µz,σ

2
zI), where µz,σz ∈ RD are again the estimates returned by the decoder / neural network.

We use neural networks for the encoder and decoder, and use stochastic gradient descent (SGD) to maximize
L(θ,φ,x) and learn parameters θ,φ. We can estimate the decoder loss based on minibatches of sizeM :

E
[

log pθ(x|z)
]
≈ 1

M

M∑
m=1

log pθ(xm|zm) (14)

Returning to our images example, in the case where x ∈ [0, 1], we define log pθ(x|z) as the log likelihood of
the data under a Bernoulli distribution:

log pθ(x|z) =

D∑
j=1

xj log pz,j + (1− xj) log(1− pz,j) (15)

Similarly, in the case where x is outside of [0, 1], we define log pθ(x|z) to be the log likelihood under a
multivariate normal distribution:

log pθ(x|z) = −D
2

log (2π)− 1

2
log |σ2

zI| −
1

2
(x− µz)T (σ2

z I)
−1(x− µz) (16)

We have described how to estimate the decoder loss. Now we describe how to estimate the encoder loss.
The Gaussian assumptions we made on pθ(z), qφ(z|x) allow us to compute the KL divergance in closed form,
where z ∈ RK :

−DKL

[
qφ(z|x)

∣∣ pθ(z)
]

=

∫
qφ(z|x) log

pθ(z)

qφ(z|x)
dz (17)

=
1

2

K∑
k=1

(1 + logσ2
x,k − µ2

x,k − σ2
x,k) (18)

We can combine equations 18 and 14 to estimate the ELBO in 13. However, we still cannot maximize the
ELBO using gradient descent. One crucial issue here is that the decoder outputs (for example pz,j), depend
on z which is sampled from N (µx,σ

2
x I). The sampling procedure is not differentiable, and thus breaks the

gradients trying to flow back from the decoder to the encoder. The result is that the neural network cannot
be optimized with gradient descent. The next section presents the reparameterization trick introduced by
[5] to resolve this issue.

3

Figure 1: A variational autoencoder. The encoder, qφ(z|x), maps an input x to a distribution parametrized
by µx,σ

2
x. The decoder, pθ(x|z) maps z back to reconstruct x.

2.5 The Reparameterization Trick

The sampling issue arises because the gradients cannot flow back through the sampling procedure to reach
the encoder network since sampling is not differentiable. This issue can thus be avoided by diverting the
non-differentiable sampling procedure outside of the network. Instead of sampling z|x ∼ N (µx,σ

2
x I), we

have:

z|x = µx + σx � ε, ε ∼ N (0, I) (19)

Here z|x still follows the same distribution as before, but the gradients can now flow through the linear
function used to derive z|x.

This completes the description of variational autoencoders. Refer to algorithm 1 for the full training pro-
cedure in the case where we are interested in encoding images with pixels ∈ [0, 1]. This algorithm can be
modified to work with larger ranges of x by using the appropriate form of log pθ(x|z) in 16.

Now, having learned estimates for pθ(z), pθ(x|z), we can return to our original goal of estimating pθ(x). This
can be achieved using an MCMC estimator but the details are not interesting from a dimension reduction
perspective so we refer the reader to [5] for more information.

Algorithm 1: Example VAE training algorithm for [0, 1] images

Initialize neural networks fenc, fdec;
for iter = 1, 2, . . . I do

Sample batch X′ of M observations from X;
Set ELBO = 0;
for x ∈ X′ do

Compute µx, σx = fenc(x);
Sample ε ∼ N (0, I);
Set z = µx + σx � ε;
Compute pz = fdec(z);
Calculate the KL loss LKL using 18;
Calculate the reconstruction likelihood LR using 15;
Update ELBO = ELBO + (LKL + LR)

Gradient descent step, maximize ELBO wrt φ,θ

2.6 Variants

We presented the standard formulation for VAEs first proposed by [5]. However, over the past few years
multiple variants have been introduced and VAEs remain an active are of research. VAEs also have close
connection to traditional, deterministic autoencoders.

4

2.6.1 Autoencoders

Traditional, deterministic autoencoders map an input x to an encoding z, and attempt to reconstruct x
using that encoding. The encoding z is deterministic so there is no sampling involved. These non-variational
autoencoders are a special case of VAEs with σ2

x = ~0. The first likelihood term in equation 13 is the
reconstruction error while the second KL term regularizes the norm of the learned encoding. Autoencoders
have been part of the neural network landscape for decades while VAEs are a recent development [1, 5].

From a dimension reduction perspective, VAEs have many attractive features that are not present in au-
toencoders. Some of these features are discussed in the Strengths section (3.1) below.

2.6.2 Priors

In the above discussion we assumed the prior distribution pθ(z) = N (z |~0, I). This prior can encourage the
representations learned by qφ(z|x) to have desirable properties (see section 3.1). This can be attributed to
the KL term in the ELBO objective pushing qφ(z|x) to be as close as possible to pθ(z).

In the same way, we can make different assumptions on pθ(z) to encourage learning representations with
specific properties. For example, [6] introduce priors that result in sparse representations (i.e. z is mostly
zeros) or clustered representations (i.e. z embeddings are clustered around a small number of points in
space). This flexibility on prior opens the door for many variations of VAEs depending on the setting.

3 Strengths and Weaknesses

So far we have followed the original motivation behind VAEs as generative models. Recent studies have
shown that VAEs have many attractive features as dimensionality reduction algorithms [3]. In this section,
we describe the strengths and weaknesses of VAEs for both dimension reduction and data generation.

3.1 Strengths

Generation: A major strength of VAEs that many dimension reduction algorithms lack is that VAEs learn
a generative model of the data which can help us understand and simulate the data generating process.

Interpretability: Another advantage of VAEs is that they learn disentangled representations of the data.
The isotropic Gaussian prior pθ(z) = N (z |~0, I) pushes the encoder distribution qφ(z|x) to learn embeddings
with independent dimensions (due to the KL term between these two distributions in the ELBO objective).
This requirement, although weakly enforced through one term in the objective, results in representations
where each dimension corresponds to an independent latent generative factor in simple cases. Representations
satisfying this property are called disentangled representations since we can adjust a specific dimension
separately to control a feature of the generated data. For example, if we are encoding images of circles, a
specific dimension of z could correspond to the size of the circle and another could correspond to the color
of the circle [2].

Flexibility: The neural networks used to estimate pθ(x|z), qφ(z|x) can capture complex and non-linear
manifolds. Large neural networks are highly flexible and can approximate any continuous function on a
closed, bounded subset of Rn (see the universal approximation theorem [1, 4]). The powerful modelling
abilities of neural networks extend to VAEs and the manifolds they learn.

Prior Knowledge: VAEs are highly flexible since different priors allow us to encourage learning rep-
resentations z with different properties such as sparsity and disentanglement (see section 2.6.2). This is
another strength of VAEs since it allows for incorporating prior domain knowledge and tuning VAE mod-
elling assumptions to fit the setting in question. Another feature of these priors is that they provide a crucial
regularizing effect that set VAEs apart from deterministic autoencoders.

Robustness and Manifold Learning: VAEs have been shown to be more robust to outliers relative to
deterministic autoencoders due to the regularization applied by the KL term [3]. It has also been shown that

5

in simple cases when the asummed dimension of z (defined by the neural network architecture) is larger than
necessary, the extra dimensions are pruned and the true dimension of z is reflected in the model [3].

3.2 Weaknesses

Noise: Recall that the ELBO objective was derived by minimizing the KL divergence between qφ(z|x), pθ(z|x)
in equation 2. This objective can be maximized by producing blurry and smooth images that ignore small
details. Thus the generated images are often too blurry to be realistic.

Complexity: VAEs do not have simple closed form solutions and require optimization with iterative
methods. This can lead to getting stuck in local minima and sub-optimal solutions. Large VAEs also require
a long time to train.

Flexibility: Large VAEs can learn complex non-linear manifolds which could be both a strength and
a weakness. An over-parameterized encoder can learn to memorize each example x and place it into a
specific region of the space of z. An over-parameterized decoder can then learn to perfectly reconstruct this
memorized sample from z to x. Thus, a large model can have small training error without capturing useful
manifolds or generalizing to test data. This overfitting can be somewhat controlled by the regularizing effect
of the KL term in the ELBO objective but this is not guaranteed [3].

4 Examples

Here we cover a few brief example illustrating the strengths and weaknesses of variational autoencoders.

4.1 MNIST

We implement a variational autoencoder for MNIST. Our model is composed of 8 hidden layers, half of
which act as the encoder with the other half acting as the decoder. The MNIST images are 28 ∗ 28 = 784
pixels so our model takes a 784 dimensional input. We assume that z ∈ R2, so we compute 2-dimensional
means µx and covariances σ2

x. Since the image pixels are ∈ [0, 1] we use the Bernoulli log pθ(x|z) form in
15. The hidden layer sizes are:

Encoder︷ ︸︸ ︷
784→ 400→ 256→ 128→

2, 2

→ 128→ 256→ 400→ 784︸ ︷︷ ︸
Decoder

At each layer of the network to map an s dimensional input, x ∈ Rs, to a t dimensional output, y ∈ Rt, we
apply a non-linear transformation:

y = f(Wx + b) (20)

where our goal is to learn the optimal W ∈ Rt×s, and b ∈ Rt. Here f is a non-linear activation function
such as a ReLU or sigmoid.

4.1.1 Dimension Reduction

VAEs are effective at dimension reduction, encoding input images into the latent variable z through the
encoder, and then reconstructing them back through the decoder to retrieve the original image. We can see
input images and their reconstructions in figure 2. These images are from a held-out test set and were never
seen during training.

We find that the VAE produces somewhat blurry images, but it is also effective at filling in missing or noisy
details such as completing the 6 and writing smoother 2’s.

We also plot the sampled z vectors used to encode the test data in figure 3. We find that our VAE learns to
separate the images into different clusters as expected.

6

(a) MNIST (b) Fashion-MNIST

Figure 2: Input images (top) and their reconstructions (bottom) generated by our trained VAEs.

Figure 3: A scatter plot of the z encodings of images in the test set. Our VAE learns to classify different
digits into separate clusters.

4.1.2 Manifold Learning

Since we assume that z ∈ R2, we can sample images along the 2-dimensional manifold learned by the VAE.
We apply the inverse CDF of the standard normal distribution (the quantile function, Φ−1) on a 2D grid
∈ [0.05, 0.95]. We then feed our decoder the returned values of z to generate the images on the manifold
in figure 4. The returned manifold is smooth, showing how numbers morph into each other as we traverse
the embedding space. This manifold has connections with the scatter plot in figure 3. We see that distinct
digits on the edge of the manifold such as 1,7,0 are placed in distinct clusters on the edges of the scatter
plot, while similar digits that morph into each other such as 2,3,8 are clustered closely in the center.

(a) MNIST (b) Fashion-MNIST

Figure 4: Examples of 2D manifolds learned by our variational autoencoder.

7

4.1.3 Generative Modelling

VAEs learn generative models of the data. Here we show the effectiveness of VAEs at generating new
examples. We sample 64 z embeddings from a 2D standard multivariate normal N (0, I) and pass them
through the decoder. The generated images are displayed in figure 5.

(a) MNIST (b) Fashion-MNIST

Figure 5: New examples generated by passing random samples of z ∼ N (0, I) through the decoder.

4.1.4 Robustness

To explore the effects of noisy data, we train a VAE and a traditional autoencoder on the MNIST data
corrupted with different amounts of noise. We then measure the reconstruction error achieved by each of
the models. We find that for small dimensions of z the two models achieve comparable performance, while
for large dimensions of z the traditional autoencoder outperforms the VAE.

[3] show that VAEs are more robust than autoencoders when training on synthetic data (refer to figure 6)
but we were unable to verify that these results extend to MNIST.

Figure 6: A scatter plot showing the robustness of VAEs to noisy synthetic data. The intensity of the blue
color corresponds to higher MSE. We were unable to verify similar effects on MNIST.

8

4.2 Fashion-MNIST

We repeat the experiments above using the Fashion-MNIST dataset. We make the same assumptions and use
the same neural network architecture. Figure 2 shows image reconstructions. Figure 4 shows the discovered
manifold. Figure 5 shows some generated examples.

4.2.1 Disentanglement

We train our VAE only on the boots class from Fashion-MNIST seperately to show that the generated
manifold learns disentangled/independent generative features as discussed in section 3.1. We can see from
figure 7 that the x-axis corresponds to the height of the heel, while the y-axis corresponds to the height of
the actual boot (from ankle height to over-the-knee) excluding the heel.

Figure 7: The VAE learns disentangled features with the x-axis being the height of the heel and the y-axis
being the height of the boot (excluding the heel).

4.2.2 Manifold Dimension

We use Fashion-MNIST to explore how VAEs learn to prune unnecessary dimensions if z is chosen to
be too large. We train the VAE architecture described in section 4.1 on the Fashion-MNIST boots, but
assume z ∈ R20 instead of R2. This corresponds to increasing the size of the hidden layer that generates
µx,σ

2
x.

VAEs can prune extra dimensions by allocating small values to the columns of the decoder weight matrix W
that follows z. This implies that specific dimensions of z are pushed to zero through the product Wz (refer
to Eq. 20). To illustrate this effect we take the absolute value of the column sums of W. This returns 20
values, each one corresponding to a dimension of z. We sort these values in decreasing order and plot them
in figure 8 to get something that resembles a scree plot.

We can see from this plot that magnitude of the weights quickly falls after 2 dimensions similar to an elbow
plot. This confirms our previous hypothesis that the boot images lie on a 2D manifold (one corresponding
to the height of the heel and the other corresponding to the height of the boot). Here our VAE was able to
retrieve the true dimension of the manifold.

9

Figure 8: The VAE learns disentangled features with the x-axis being the height of the heel and the y-axis
being the height of the boot (excluding the heel).

References
[1] Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning, volume 1. Citeseer, 2017.

[2] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599, 2018.

[3] Bin Dai, Yu Wang, John Aston, Gang Hua, and David Wipf. Hidden talents of the variational autoen-
coder. arXiv preprint arXiv:1706.05148, 2017.

[4] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–
257, 1991.

[5] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[6] Emile Mathieu, Tom Rainforth, Siddharth Narayanaswamy, and Yee Whye Teh. Disentangling disentan-
glement. arXiv preprint arXiv:1812.02833, 2018.

10

	Introduction
	Method
	Setting
	Goals
	Inference as Optimization
	SGD Variational Estimator
	The Reparameterization Trick
	Variants
	Autoencoders
	Priors

	Strengths and Weaknesses
	Strengths
	Weaknesses

	Examples
	MNIST
	Dimension Reduction
	Manifold Learning
	Generative Modelling
	Robustness

	Fashion-MNIST
	Disentanglement
	Manifold Dimension

