
Practical 4: Reinforcement Learning

Abdul Saleh, Dean Hathout, Brendan O’Leary
{abdelrhman saleh, dhathout}@college.harvard.edu, boleary@g.harvard.edu

abdulsaleh, dhathout, boleary134
https://github.com/AbdulSaleh/cs181-practical4-teamDBA

May 7, 2019

1 Technical Approach

The game Swingy Monkey provides a fertile landscape for the application of reinforcement learning.
An agent can learn to play the game on its own by interacting with the game’s environment,
adjusting its optimal policy based on feedback from the agent’s action. It is also inexpensive to get
data samples to learn this optimal policy by simply playing more games.

In this practical, we experiment with 3 reinforcement learning approaches for playing Swingy Mon-
key:

1. Traditional Q-Learning: Q values for each state-action pair are recorded in a table.

2. Linear Q-Approximation The Q-function is approximated by a linear model.

3. Deep Q-Approximation: The Q-function is approximated by a 6 layer network with 256
neurons each and ReLU activation.

A classic approach in reinforcement learning is Temporal-Difference Learning, where we learn the
Q function, Q(s, a), by bootstrapping from the current estimate of the value function and updating
the Q function to minimize the error between a predicted and target Q value. In our traditional
Q-Learning approach we model the Q function as a table of state-action pairs such that the
optimal policy π(s) = arg maxaQ(s, a). The Q values are updated via stochastic gradient descent
with learning rate α.

Q(s, a)← Q(s, a)− α[Q(s, a)− (r(s, a) + γmax
a∈A

Q(s′, a′))] (1)

We arrive at this update by defining a loss function to minimize similar to that of mean squared
error (note we parameterize the table of estimated Q values as Q(s, a);w) with parameters w.

L(w) =
1

2
Es,a

(
Q(s, a;w)− [r(s, a) + γ

∑
s′

p(s′|s, a) max
a′

Q(s′, a′;w)]

)2

(2)

1

Learner Max Score Mean Score

1 Traditional, α = 0.3, εmax = 0.5, εmin = 0 69 4.54
2 Linear Q-Approx, α = 1e−12, ε = 0 18 0.04
3 Deep Q-Approx, α = 1e−6, ε = 0, batch size = 8 2 0.03
4 Deep Q-Approx, α = 5e−7, ε = 0, batch size = 32 24 0.51
5 Deep Q-Approx, α = 1e−7, ε = 0, batch size = 32 2 0.01
6 Deep Q-Approx, α = 5e−7, ε = 0, batch size = 8 36 0.98
7 Deep Q-Approx, α = 5e−7, ε = 0, batch size = 16 1 0.02

Table 1: Maximum and average scores for Swingy Monkey using various Q-learners trained with
standard features. Best result in bold. γ = 1 for all.

Learner Max Score Mean Score

1 Traditional, γ = 1, α = 0.3, εmax = 0.5, εmin = 0 293 17.79
2 Traditional, γ = 0.7, α = 0.3, ε = 0 46 2.91
3 Traditional, γ = 1, α = 0.1, ε = 0 931 51.35
4 Traditional, γ = 1, α = 0.3, ε = 0 1389 103.24
5 Traditional, γ = 1, α = 0.4, ε = 0 296 9.18

Table 2: Maximum and average scores for Swingy Monkey using various Q-learners trained with
engineered features. Best result in bold.

Minimizing this loss with respect to the weights, we can approximate the gradient to be used in
the learning update as:

∂L
∂ws,a

≈ Q(s, a;w)− [r + γmax
a′∈A

Q(s′, a′;w)] (3)

In addition to recording the Q values in a table, we experiment with parametrizing Q in a func-
tional form using both linear models and deep neural nets. We call these approaches Linear
Q-Approximation and Deep Q-Approximation). This proves necessary in cases where the
learning problem becomes large, particularly when the state space is continuous. We provide the
functional form of the linear version for illustration:

Q̂(s, a) = w>φ(s, a) (4)

where weights w are learned through gradient descent and φ is an arbitrary basis function.

fea-
tures

We run experiments using both the default standard features describing the state such as position
of bottom of monkey, position of tree trunk etc. We also experiment with engineered features
such as distance between top of monkey and tree trunk and distance between bottom of monkey
and top of tree trunk. We additionally included a gravity feature, based on the falling velocity
of the monkey, in both the standard and engineered feature sets. For the traditional Q-learning
approach, the features were discretized into 12 bins to shrink the space size.

Figure 1: Results for the best Traditional Q-Learning, Linear Q-Approximation, and Deep-NN
Q-Approximation (Learner 3, 8, and 12, respectively).

2 Results

Table 1 summarizes our results for the 3 approaches trained on the standard features. As the table
shows, the traditional approach achieves the highest score so we decide to test it on the engineered
features. Table 2 shows scores achieved by the traditional model using the engineered features for
different hyperparameter settings.

We compare a decaying ε-greedy policy for exploration, starting at εmax and falling to εmin for
exploration. However, we find that a completely greedy policy with ε = 0 achieves better per-
formance. We also find that a discount factor of γ < 1 hurts performance, possibly because it
minimizes the value of longer term rewards which are important for this task. Our results also
show that learning is highly sensitive to parameter initialization. So for example, performance
noticable drops between α = 0.3 and α = 0.4. Figure 2 shows the effect of changing α on the scores
achieved at each iteration.

The best performing was achieved through traditional Q-Learning with engineered features. It
outperforms all other models as seen in Table 1 and Table 2, achieving a maximum score of 1389
and average score of 103.24.

3 Discussion

diver-
gence

Comparing the results of these various models on standard features raises several interesting points,
the most salient of which is the clear instability of the functional approximations. As can be seen in
table 1, Linear Q-Approximation achieves a max score of 18 and an average score of 0.04, failing to
pass even the first tree trunk the vast majority of the time. Additionally, we note that essentially
all hyperparameter configurations attempted for this approach resulted in divergence, with weights
w exploding in magnitude. We hypothesize that this results from the fact that the same model

Figure 2: Discrete linear approximations: all models use γ = 1, ε = 1, new features with varying
α : (0.1, 0.3, 0.4).

is used to approximate both the predicted and target Q-values when calculating the loss. This
simulates a cat chasing its own tail resulting in divergence.

Deep Q-Approximation, while slightly more stable than the linear model, also suffers from poor
performance and frequent divergence. The best Deep Q model (with a learning rate of 5e−7 and a
batch size of 8) achieves a maximum score of 36 and a mean score of 0.98, only navigating through
the first tree trunk on average. The performance of these functional approximations are visualized
in Figure 1, which clearly shows an inability to learn for these models.

In contrast, Figure 1 shows that traditional Q-Learning is able to achieve satisfactory scores within
approximately 100 games, with a generally increasing relationship between Score and Game Num-
ber. Table 1 shows much better maximum and average performance for this model. As such, we
decided to continue experimentation with this approach only. Table 2 shows the performance of
the traditional method with various hyperparameter configurations, on engineered features. This
feature set consists only of distance to tree, monkey velocity, distance between tree top and monkey
top, and distance between tree bottom and monkey bottom. Since the monkey’s height and the
length of the tree gap remain the same for all games, we are able to shrink the feature space down
in this way without losing any information, resulting in a less complex Q-function to estimate.
We hypothesize that this is the reason for improved performance of the traditional Q-learner on
engineered features relative to standard features.

Thus we conclude that although the Q-function approximation can be more flexible and powerful
than using a state-action pair table, this flexibility comes at the cost of instability and sensitivity
to hyperparameter settings.

We also note that using a completely greedy strategy with ε = 0 unexpectedly outperformed
ε-greedy strategies which balance exploration and exploitation. We hypothesize this is because
forcing the model to explore wastes valuable training time when the task is simple and the training
iterations are limited. Instead, we exploit each step to maximize performance while implicitly
exploring in the process since the Q-function estimates are noisy during learning.

	Technical Approach
	Results
	Discussion

