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1 Technical Approach

Urban sound classification is the task of classifying audio sequences of environmental sounds into
classes. Urban sound classification is employed in self-driving cars and numerous real world appli-
cations making it an important problem in machine learning. However, as is the case with many
machine learning models, supervised models for classifying sounds are limited by the scarcity of
labeled data.

Hypothe-
sis

In this practical, we explore two methods for learning from both labeled and unlabeled data
to mitigate the issue of data scarcity. We hypothesize that leveraging both labeled and unlabeled
data will help us find better classification boundaries leading to improved generalization. We also
motivate our approaches from both Bayesian and frequentist perspectives.

Multiple approaches for learning from labeled and unlabeled data (or semi-supervised learning)
have been proposed. We list below the two approaches we explore:

1. We apply k-means clustering on all the data and use the cluster assignments as input features
to the supervised learning models similar to the analysis in Peikari et al. (2018). We refer to
this as the clustering approach.

2. Following the analysis in Zhang and Schuller (2012), we first train a supervised model on the
training data. We then infer the labels for the unlabeled data and use predictions made with
> 80% confidence as true labels. We then retrain our supervised model on the expanded data
set. We refer to this as the label propagation approach.

Note that for the clustering approach, the supervised models are still only trained on the originally
labeled data points. However, we expect that the cluster assignments (derived from both labeled
and unlabeled data points) will incorporate extra knowledge about the data distribution that is not
obvious from considering the labeled data separately. This makes sense from a Bayesian perspective
as the inherent structure of the features is assumed to generate the labels.

For the label propagation approach, we take a more frequentist perspective as we directly model
P (label |data) and propagate the predictions learned by the supervised model to the unlabeled
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Figure 1: A (3, 3) filter with stride 1 applied to (32, 32, 3) input.

data. This is justified under a frequentist perspective as we are only concerned with learning
the distribution of the label given the data rather than modelling the distribution of the data
independently.

Preprocess-
ing

The raw training data contains 6,374 audio clips represented as sampled amplitudes, only 2,307 of
which are labeled. The labeled training samples come from ten classes of sounds: air conditioner, car
horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, and street
music. We follow the preprocessing in Shu et al. (2018) and generate mel-scaled spectrograms
from the amplitudes, which depict the sound frequencies of the signal over time. Since the sound
waves are likely to repeat in a similar manner over time, we split each sample into multiple 50%
overlapping segmentation windows 320ms in length. This increases the data sample size by 25
times. Our feature set includes both the mel-spectrogram frequency features as well as multiple
width delta frequencies.

Our main model for this practical is the convolutional neural network (CNN) proposed in Shu et al.
(2018). The network is composed of 8 layers defined as follows:

Layer Output Dim. Description

* (64, 14, 2) log-scaled mel-spectogram
1 (64, 14, 32) (2, 2, 2) convolution, 32 filters, ReLU
2 (63, 13, 32) (2, 2) convolution, 32 filters, ReLU
3 (31, 6, 32) (2, 2) max pool, 15% dropout
4 (31, 6, 64) (2, 2) convolution, 64 filters, ReLU
5 (30, 5, 64) (2, 2) convolution, 64 filters, ReLU
6 (15, 2, 64) (2, 2) max pool, 20% dropout
7 (1, 256) Fully-connected, ReLU, 50% dropout
8 (1, 10) Fully-connected, Softmax

Table 1: Table outlining our model architecture.

Figure 1 shows an example of a convolutional layer. In our network, the values of the filter (colored
blue) are the learned weights. Our model has 500k trainable parameters. We minimize the cross-
entropy loss defined by:

L(X,y,θ) = −
∑
i

∑
j

yij log p(ŷij |xn) (1)

When applying the unsupervised clustering approach, we append the cluster assignments as one-hot



Model Labeled Clustering Propagation

LR 41.0 40.4 44.2
RF 45.2 44.2 54.3
CNN 56.0 57.7 56.6

Table 2: Test set accuracy of all trained models. Best result in bold. Largest improvement from
semi-supervision underlined.

neurons at layer 7.

Implemen-
tation

We implement our CNN using Keras1 and use Adam optimizer (Kingma and Ba, 2014) for training
with the default learning rate of 0.001. We use sklearn2 for all other machine learning models.
And we use LibROSA3 for preprocessing the data.

2 Results

In addition to our CNN, we experiment with logistic regression (LR) and a random forest classifier
(RF) for reference. The public test set results of our models are summarized in Table 2.

The CNN outperformed all other models across both the supervised and the semi-supervised ex-
periments. The highest accuracy was achieved by training the CNN with semi-supervision using
the pre-calculated cluster assignments as additional input features.

The results also showed that the effect of semi-supervision was inconsistent across different models.
In some cases, leveraging unlabeled data resulted in significant performance improvements. For
example, the RF classifier saw a 10% increase in accuracy through label propagation. However, in
other cases the change in accuracy was negligible. Label propagation improved the CNN accuracy
by a modest 0.6% while clustering semi-supervision hurt the performance of LR by 0.6%.

Overfit-
ting

We also note that the training accuracy is much higher than test accuracy in our experiments. We
get a training accuracy of > 90% and > 80% for the CNN and RF, respectively. We hypothesize
this large gap between training and test performance is caused by the difference in class distribution
between the test set and the training set. So here we have an issue of an unrepresentative training
sample rather than an overly complex model.

3 Discussion

In this practical, we compared two semi-supervised learning methods for urban sound classification.
Our results support our hypothesis and suggest that learning from both labeled and unlabeled
data can be preferable to learning from labeled data alone. We found that our semi-supervised
approaches sometimes produced significant gains of up to 10% in absolute accuracy when training

1 https://keras.io/ 2 https://scikit-learn.org/ 3 https://librosa.github.io/
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ID Class Train Freq. (%) Train & Test Freq. (%)

0 Air Conditioner 19.33 13.61
1 Car Horn 4.07 2.77
2 Children Playing 19.12 13.23
3 Dog Bark 15.47 9.22
4 Drilling 0.87 10.98
5 Engine Idling 19.25 13.12
6 Gunshot 0.52 0.22
7 Jackhammer 0.87 10.96
8 Siren 0.87 12.24
9 Street Music 19.64 13.65

Table 3: Class frequencies in % for labeled training data and entire dataset (train and test).

an RF classifier with label propagation. However, these gains were not consistent across all models
and incorporating unlabeled data often made negligible difference.

In retrospect, it is not surprising that semi-supervision resulted in limited improvements for most
models. For the clustering case, using cluster assignments is not helpful if the labeled data is enough
to learn generalizable decision boundaries. Using cluster assignments could also be unhelpful or
problematic because of the difficulties clustering high dimensional audio data to begin with. Simi-
larly, label propagation could be ineffective because the labels assigned to the unlabeled data come
from predictions of a model that was only trained on the labeled examples. So label propagation
could be interpreted as a data augmentation approach which supplements the labeled examples
rather than mining for new patterns.

The influence of semi-supervision supervision could have been diminished by the fact that our
preprocessing pipeline inflates the training data by factor of 25 increasing the size of the training
set. This can be viewed as a data augmentation strategy similar to label propagation. However, if
the training set size had remained small and uninflated, the effects of semi-supervision might have
been more pronounced.

As mentioned above, we notice a significant disparity between training and test set accuracy in
our models. We do not believe this is due to overfitting, as we scored our models on a separate
validation split taken from the labeled training data, and achieved similar accuracy to the training
set. Rather, we believe that this disparity is the result of significantly different class distributions
in the training and test data. We calculate the distribution of sound classes in the training set, and
compare to the distribution in the entire dataset (train & test) in Table 3.
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