
Practical 1: Stacked Regression for Predicting Chemical Toxicity

Abdul Saleh, Dean Hathout, Brendan O’Leary
{abdelrhman saleh, dhathout}@college.harvard.edu, boleary@g.harvard.edu

abdulsaleh, dhathout, boleary134

February 16, 2019

1 Technical Approach

Cross-validation is one of the most commonly used methods for model selection. When one is faced
with a multiplicity of learning algorithms, cross-validation can provide an estimate of the gener-
alization accuracy of each algorithm, then the one with the highest accuracy is chosen. However,
this winner-take-all strategy ignores the fact that even weak models can make good predictions in
certain cases.

Motivated by this limitation, this practical explores stacked regression (Wolpert, 1992; Breiman,
1996; LeBlanc and Tibshirani, 1996) as an ensemble method for combining the predictions of
multiple base models rather than choosing the best among them.

Many aspects of stacking have been described as “black art”, to use Wolpert’s words. And although
different variations of stacking have been used to achieve state of the art results, to the best of
our knowledge, there remains little consensus regarding how stacking should be applied in practice.
This practical will shed some light on this black art by exploring 2 approaches for hyperparemeter
tuning with stacked regression.

What follows is a technical description of stacked regression and our two hyperparameter tuning
approaches. We analyze our methods in more detail in section 3.

Let L be our learning set {(yn,xn), n = 1, . . . , N}. Assume we have a set of k base learners
f1(x), . . . , fk(x). Stacked regression combines these base regressors by training a meta-learner on
their predictions. The predictions from the base models are generated as follows: split L into J
almost equal parts and let L(j) = L−Lj . Then train your predictors on L(j) and make predictions
on the unseen Lj for each j ∈ {1, · · · , J}. This is equivalent to creating J folds, training on J − 1
folds and making predictions on the left out fold.

The J sets of “out-of-fold” predictions can be used to create a new learning set L′ = {(yn, zn), n =
1, . . . , N}, where zn is a k dimensional vector. A meta-learner is trained on this new learning
set L′ attempting to predict yn from the predictions of the base models zn. In this practical, we
use bounded least squares (BLS) with non-negative coefficients, following the recommendations of

1

Breiman (1996). Thus our final model is of the form:

f(xn) =
∑
k

αkfk(xn) (1)

with αk being the bounded least squares coefficients. Breiman (1996) showed that under some
weak assumptions

∑
k αk ≈ 1, implying that the meta-learner acts as a weighted average of the

base predictions. This is more convenient than using a ridge regression meta-learner, for instance,
since it does not guarantee predictions in the range [mink fk(x),maxk fk(x)] as a weighted average
does.

For our base models, we use ridge regression, gradient boosted regression, random forest regression,
support vector regression, bagging regression, and k-nearest neighbours regression. We do not cover
the inner workings of these base models as they are not relevant to our main focus of exploring
hyperparameter tuning strategies for stacked regression.

We experiment with two approaches for hyperparameter tuning:

1. Our first approach uses base models with default (sklearn) parameters to create the out-of-
fold predictions learning set L′ = {(yn, zn), n = 1, . . . , N}. Then the bounded least squares
meta-learner is trained on this new learning set as described above.

2. Our second approach involves picking the “best” hyperparameters for the base models through
grid search and cross-validation on the training set. The out-of-fold predictions learning set
L′ is created using these fine-tuned base models. Then the bounded least squares regressor
is trained on this learning set as before.

Note that in the above approaches we rely on out-of-fold prediction to generate L′ for the meta-
learner. Out-of-fold predictions are crucial to stacking because we want our meta-learner to empha-
size base models that generalize well to unseen, out-of-fold data. Consider the case were out-of-fold
predictions are not used: we can overfit a base model by memorizing all the training data and the
meta-learned will emphasize this overfit base model thinking that it performs well. This results in
a stacked model that is also ovefit on the training data. Using out-of-fold predictions overcomes
this problem of data leakage from the base models to the meta-learner.

Top
Highlight

The hyperparameter tuning approaches we compare in this practical are aimed at exploring the
effects of data leakage when fine-tuning the base models using cross-validation. The second approach
we propose exposes the whole training set as we do cross-validation to pick the best hyperparamters
for the base models. Even though the base models still generate out-of-fold predictions for the meta-
learner, cross-validation picks the base models with the best out-of-fold performance inducing some
indirect data leakage. This practical tests whether tuning the base models results in performance
gains that justify this data leakage.

Method RMSE (·10−2)

Ridge Regression 3.527
Gradient Boosted R. 3.564
Random Forest 3.502
Support Vector R 3.595
Bagging Regressor. ***
KNN ***

Table 1: Test set performance in RMSE of
single best predictor chosen through
cross-validation. Lower is better.

Method RMSE (·10−2)

Default base models

Avg Stacked 3.468
BLS Stacked 3.464
Ridge Stacked 3.465

Fine-tuned base models

Avg Stacked 3.473
BLS Stacked 3.509
Ridge Stacked 3.517

Table 2: Test set performance of stacked mod-
els in RMSE. Lower is better.

2 Results

Table 1 shows test set results for our base models which were parameter-tuned using cross-validation
on the training set1. The models in Table 1 were used to generate the out-of-fold predictions for
our second approach.

We can see from Table 1 that random forest regressors are the strongest single model, achieving a
root mean squared error of 0.03502.

Table 2 summarizes the performance of our stacked models with default and tuned base models on
the test set. In addition to BLS stacking, we also experiment with a ridge meta-learner and with
simply taking the mean of the base model predictions to produce a final prediction. We call these
approaches Ridge Stacked and Avg Stacked in Table 2 above.

Top
Result

Table 2 shows some interesting results. We see that stacking base models with default hyperparam-
eters outperforms stacking fine-tuned base models for all the meta-learners tests. We can also see
that using BLS as a meta-learner slightly outperforms the Ridge and simple “Avg” meta-learners
when using the default base models, but the “Avg” approach performs best out of the three when
using the fine-tuned base models. We discuss this more below. Additionally, for the fine-tuned base
models, stacking using “Avg“ achieved lower RMSE than the single best fine-tuned model.

3 Discussion

The results in Tables 1 and 2 confirm our initial intuition that ensembles are better than using the
single best model. The test set error for the best stacked model, as measured by RMSE, is lower
than that of the best base models. The base models make different predictions as illustrated by
Figure (b) and the meta-learners learn the best models to emphasize. However, the three meta-

1Some results are missing because Kaggle limits the number of submissions to 4 per team despite being originally
informed that we are allowed 4 submissions per team member.

(a) K Nearest Neighbors Cross Validation: 95% Con-
fidence Interval

(b) Predictions correlation matrix for default base models

learners (BLS, Ridge, and simple average) do not appear to produce significantly different results
as their predictions are 99% correlated.

Moreover, as alluded to above, stacking contains a trade-off between the optimization of hyperpa-
rameters within each base model and avoiding data leakage at the meta-learner level. As seen in
Figure (a), initial hyperparameter tuning suggests that it can reduce base-model over fitting, but
data leakage may disrupt this improvement. Table 2 confirms this data leakage concern as the
models with base model hyperparameter tuning perform worse than those without hyperparameter
tuning.

Main
Takeaway

When we do cross-validation, our choice of base models is affected by the training set out-of-fold
performance implying that the whole training set is indirectly exposed. However, as our results
suggest, the meta-learner overfits as a result of this data leakage. This is further supported by
the fact that the best fine-tuned base model (random forest) outperforms the stacked Ridge and
BLS models which are trained with random forest predictions as a feature. More evidence comes
from the observation that for the fine-tuned base models, the “Avg Stacked” approach which does
not suffer from data leakage outperforms the Ridge and BLS meta-learners and the best fine-tuned
base model.

While this data leakage proves troublesome for this dataset, a dataset with sufficient size to optimize
hyperparameters and meta features without overlap may take full advantage of the benefits of
stacking.

References

Leo Breiman. 1996. Stacked regressions. Machine learning, 24(1):49–64.

Michael LeBlanc and Robert Tibshirani. 1996. Combining estimates in regression and classification.
Journal of the American Statistical Association, 91(436):1641–1650.

David H Wolpert. 1992. Stacked generalization. Neural networks, 5(2):241–259.

