
Splines for Regularization and Simple Speech Recognition

Abdul Saleh∗ Dean Hathout∗
Harvard College

{abdelrhman saleh, dhathout}@college.harvard.edu

Abstract

This project explores using smoothing splines
for regularizing logistic regression models.
We apply spline-regularized logistic regres-
sion to a simple speech recognition task. We
find that adding spline-regularization improves
classification accuracy outperforming all base-
lines. We also find interesting (empirical) con-
nections between L2 and spline regularization.

1 Introduction

Many of the models we have encountered in this
course have assumed that the response variable is
linear in its predictors. These models are conve-
nient and easy to interpret, but in many cases it is
highly unlikely that the relationship between the
response and predictors is truly linear.

Basis expansions transform the predictors to
capture non-linear patterns, achieving more flex-
ible predictive models. Splines are a special type
of basis functions that fit piecewise polynomials
with smoothness restrictions over different regions
of the predictors. Splines enforce smoothness by
requiring continuity of derivatives where any two
polynomials meet (figure 1).

In addition to their predictive power, splines can
also be used for regularization. Fitting splines on
the coefficients of other predictive models amounts
to putting smoothness constraints on how the coef-
ficients vary from one feature to another. Enforc-
ing the smoothness of coefficients can improve
model performance if 1) the features are ordered
and 2) we have reason to believe that the coeffi-
cients should not vary significantly from one fea-
ture to the next. For example, this applies in
speech recognition where it is expected for simi-
lar sound frequencies to have similar coefficients.

∗ Equal contribution

Figure 1: Example of cubic piecewise polynomials
with increasing orders of continuity (Hastie et al.,
2001).

We demonstrate the regularizing effect of
splines by applying spline-regularized logistic re-
gression to distinguish between one-second long
utterances of ”Yes” and ”No”. We also evaluate
the performance of more complex models such as
random forest classifiers and support vector ma-
chines on the same task for reference.

We hypothesize that spline-regularized logistic
regression will outperform more complex models
because of the prior knowledge introduced into
the regularized model as restrictions on the co-
efficients. Although random forests and support
vector machines have been shown to outperform
logistic regression on many tasks (Couronn et al.,
2018; Salazar et al., 2012), we predict that without
smooth coefficients, these powerful models will
easily overfit the training data hurting their perfor-
mance.



2 Background

Fitting piecewise polynomials is sometimes
preferable to fitting a global polynomial. Low-
order polynomials might not have the capacity to
fit complex patterns. At the same time, high order
polynomials are prone to ”flapping” about outside
of the given data range. (figure 2) In this section,
we describe how to fit splines which are functions
defined by piecewise polynomials.

Figure 2: Example where splines are preferable to
global polynomials.

2.1 Linear Splines
Suppose we have n data points {(xi, yi), i =
1, ..., n}. Let XN×1 = (x1, ..., xn) be our de-
sign matrix and let YN×1 = (y1, ..., yn) be our
response variable. To fit a spline modelling Y =
f(X), the domain of X is divided into intervals
which meet at the knots ξ1, ..., ξk. Within each
interval we represent f by the basis functions,
hi(X). For example, in the top left panel of fig-
ure 3, we see a piecewise constant polynomial,
which has these basis functions:

h1(X) = I(X < ξ1), h2(X) = I(ξ1 < X < ξ2),

h3(X) = I(X > ξ3)

where I is constant within the given range and
zero otherwise.
A note on basis functions: Basis functions can be
considered transformations on the predictors. So
in the case above our model takes the form Y =∑3

m=1 βmhm(X) rather than Y = β1X .
To define the piecewise linear function shown in

the top right panel of figure 3, three basis functions
are added:

h4(X) = h1(X)X, h5(X) = h2(X)X

Figure 3: Piecewise Constant and Linear Functions
(Hastie et al., 2001).

h6(X) = h3(X)

Each of the new basis functions hi (corresponding
to an additional column of the design matrix) is as-
sociated with a βi so we can model both intercepts
and slopes with βiX terms.

2.2 Enforcing Continuity
We can enforce first order continuity with the
help of truncated polynomials of degree one rep-
resented by (x− ξk)D+ , with D = 1:

(x− ξk)D+ =

{
0 x < ξk

(x− ξk)D x ≥ ξk

It follows that we can represent the model in the
lower left panel of figure 3 by these basis func-
tions:

h1(X) = 1, h2(X) = X,

h3(X) = (X − ξ1)+, h4(X) = (X − ξ2)+

Truncated polynomials ensure that polynomials on
both sides of ξi intersect at X = ξi. Again, each
basis function hi is associated with a coefficient
βi.

2.3 Cubic Splines
We can extend the ideas presented above to non-
linear splines (namely cubic ones). We do this by
fitting cubic polynomials between the knots with



additional continuity restrictions on the first and
second order derivatives.

We consider the same setup as before. In this
case, the truncated polynomial basis for the cubic
spline is comprised of the following functions:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)3+

h2(X) = X, h4(X) = X3, h6(X) = (X−ξ2)3+,

The first four basis functions, which span the
entire domain of X , allow any cubic polynomial
to be fit in the region to the left of the first knot.
Adding the extra cubic terms in h5(X) and h6(X)
allow polynomials to be fit in the regions to the
right of the first and second knots.

Moreover, it is not difficult to see that the trun-
cated polynomial basis above enforces continuity
on the first and second order derivatives. Taking
first and second derivatives of the truncated poly-
nomial terms yield terms that still meet at the knots
ξi. As a result, the truncated polynomials in the
derivative equations ensure that the derivatives are
equal at X = ξi.

2.4 General Splines
The general non-linear spline follows naturally
from the cubic case. In general, a spline of order
M with K knots ξ1, ..., ξK is a piecewise polyno-
mial of order M (degree M − 1) and continuous
derivatives to order M − 2. The truncated polyno-
mial basis for the order-M spline is simply:

hj(X) = Xj−1, j = 1, ...,M

hM+l(X) = (X − ξl)M−1+ , l = 1, ...,K

Continuity up to the firstM−2 order derivatives
follows by the same logic described above in the
cubic case.

2.5 Degrees of Freedom
We notice that after enforcing continuity when fit-
ting the linear spline above, we went from needing
six basis function to only needing four. Similarly,
we only need six basis functions to fit the cubic
spline, even though we fit a separate cubic poly-
nomial (which typically takes four parameters) in
each of the three regions partitioned by the knots
ξ1 and ξ2. This is due to the continuity restrictions.

With the linear spline, the slope and intercept of
the linear function for the region X < ξ1 deter-
mine the intercept for the region ξ1 < X < ξ2
since the lines meet at the knots. Similarly, the

slope and intercept of the linear function in the re-
gion ξ1 < X < ξ2 determine the intercept for the
region ξ2 < X . Thus, we are left with only four
parameters which is equal to the number of basis
functions we found for this spline.

This idea extends to non-linear splines as well,
with the general rule being that each continuity re-
striction at each knot yields one extra degree of
freedom (takes away one parameter to be fit). So,
for the cubic spline example above, there are only
six parameters to fit; there are initially twelve pa-
rameters – four for each cubic polynomial in the
three regions defined by the knots at ξ1 and ξ2 –
then at each of the two knots, there are three con-
tinuity restrictions imposed: the function itself, its
first derivative, and its second derivative are forced
to be continuous. Three restrictions at each of two
knots takes away 3 x 2 = 6 parameters, yielding
12 - 6 = 6 parameters, which equals the number of
basis functions we found for this spline.

Similarly, the general order-M spline has M +
K parameters; there are (K+1)M parameters ini-
tially –M for each degreeM−1 polynomial in the
K+1 regions defined by theK knots. Then, there
are M − 1 continuity restrictions imposed at each
of the k knots: the function itself and its firstM−2
derivatives are forced to be continuous. M − 1 re-
strictions at each ofK knots takes away (M−1)K
parameters, yielding (K + 1)M − (M − 1)K =
M + K parameters, which equals the number of
basis functions we found for the general spline.

2.6 Spline Regression & Design Matrices

With the general truncated polynomial basis func-
tions above, it is straightforward to see that for a
spline regression (with only one predictor X), the
design matrix is
1 X1 . . . X

(M−1)
1 (X1 − ξ1)(M−1)+ . . . (X1 − ξK)

(M−1)
+

1 X2 . . . X
(M−1)
2 (X2 − ξ1)(M−1)+ . . . (X2 − ξK)

(M−1)
+

...
1 Xn . . . X

(M−1)
n (Xn − ξ1)(M−1)+ . . . (Xn − ξK)

(M−1)
+


The resulting model has coefficients βi for i =
0, 1, ...M +K − 1. These coefficients can be cal-
culated by treating this as an ordinary least squares
regression problem while using the transformed
design matrix instead of the original features.

2.7 Smoothing Splines & Regularization

At this point, one natural question which arises is
that of how many knots to introduce in the domain



of X and where to place them. Smoothing splines
addresses this problem by simply using a maximal
set of knots, i.e. introducing a knot at each data
point. Doing so leads to a complex fit. But we
can introduce a fixed smoothing parameter, λ, that
penalizes curvature to control for this added com-
plexity. In particular, the fit spline f is the one
which minimizes a penalized RSS loss function:

RSS(f, λ) =
N∑
i=1

{yi − f(xi)}2 + λ

∫
{f ′′(t)}2dt

2.8 Logistic Regression

Let Yi be a binary response variable to be pre-
dicted from a vector of n features, Xi =
(x1, x2, ..., xn) for the ith datapoint. We can fit
a logistic regression model to predict the posterior
probability of Yi = 1 of this form:

P(Y = 1i|Xi) =
1

1 + exp(−θ̂TXi)
(1)

were θ̂ is a vector of n parameters, θ1, ..., θn,
learned through iterative numerical methods maxi-
mizing the likelihood function, p(X; θ) = P(Y =
1|X, θ), with respect to θ.

3 Approach

3.1 Spline Regularization

For small training datasets with a large number of
features n, the components of θ can fluctuate sig-
nificantly and have large magnitudes. When this
is the case, logistic regression models become too
dependent on certain features and make unjustified
confident predictions leading to overfitting.

Under some assumptions, we can prevent lo-
gistic regression models from overfitting by using
smoothing splines. In the following sections, we
demonstrate this regularizing effect by training a
logistic regression model to distinguish between
one-second utterances of ”Yes” and ”No”.

For each one-second clip, the power of the sig-
nal was measured at 128 frequencies to generate
the input features (figure 4). The input features
represent an estimate of the spectral density of the
signal. The details of this transformation is beyond
the scope of this project. However, it is sufficient
to note that each component represents the power
of a specific frequency in the sound clip.

For spline regularization to be effective, two
conditions need to apply:

Figure 4: Spectral density plots of ”Yes” and ”No” ut-
terances.

1. The features are ordered

2. It should make sense for the coefficients, θi,
to not vary significantly from one feature to
the next.

Both of these conditions apply when using spec-
tral density estimates for speech recognition. The
features in the ith clip, Xi, are in ascending or-
der based on the corresponding frequency, and it
makes sense for coefficients of similar frequency
to have similar values since they sound the same.

After fitting a regularized regression model to
this task, we expect to get θi’s that fluctuate sig-
nificantly from one frequency position to the next
(blue line in figure 5).

We apply spline-regularization by fitting a
smoothing spline on the coefficients, θi, of the
trained logistic regression model (red line in fig-
ure 5). This allows us to restrict the coefficients
to vary smoothly from one frequency to the next.
By restricting the coefficients in this way, we are
introducing ”prior” knowledge (in a non-Bayesian
sense) we have about the prediction task into the
model. This approach also simplifies the model
and stabilizes the coefficients mitigating the effect
of overfitting.

3.2 Other Models

We also evaluate the performance of support vec-
tor machines, random forests, and ridge regression
on this task for reference. For more information
regarding these algorithms, please refer to Hastie,
Tibshirani, and Friedman (2001).



Test Train
Method Accuracy Precision Recall F1 Accuracy Precision Recall F1
Majority Baseline 50.0 50.0 100.0 66.7 50.0 50.0 100.0 66.7
SVM 91.0 94.2 87.4 90.1 100.0 100.0 100.0 100.0
Random Forest 90.6 92.3 88.6 90.4 99.0 100.0 98.0 99.0
Vanilla Logistic 88.9 88.3 92.0 90.1 100.0 100.0 100.0 100.0
Ridge Logistic 92.4 90.8 94.4 92.5 98.8 99.6 98.0 98.8
Spline-Logistic 91.7 90.6 93.0 91.8 94.6 96.3 92.8 94.5

Table 1: Training and test set results summary in %. Best results in bold.

Figure 5: Plot of coefficients vs frequency, before and
after spline-regularization.

4 Experiments and Results

4.1 Dataset

We used the Google Speech Commands Dataset
(Warden, 2018) for our experiments. We randomly
sampled 500, 1000, and 1000 one-second utter-
ances for training, validation, and testing respec-
tively (2500 in total). The datasets were balanced
with half of the utterances being ”Yes” and the
other half being ”No”. We generated the features
using the methods described in Section 3.1.

4.2 Results

The results are summarized in table 1. We
chose models based on validation set performance.
Some naive hyperparameter tuning was done for
all models. We call the unregularized logistic re-
gression model Vanilla Logistic.

The experiments agree with our intuition and
we find that SVMs and Random Forests easily
overfit to the training set, even after hyperparame-
ter tuning on the validation set. Despite the vanilla
model being much simpler than SVMs and Ran-
dom Forests, it still severely overfit the training set
achieving an accuracy, precision, recall, and F1 of
100%, and much significantly worse results on the

Figure 6: Plot showing similarity between spline-
regularized coefficients and ridge regression coeffi-
cients.

test set. In other words, it was able to correctly
classify all the sound-clips in the training set, but
was very sensitive to deviations from the data on
which it trained.

We fit a smoothing spline on the vanilla
model coefficients and select λ based on valida-
tion set performance. As hypothesized, spline-
regularization improved absolute validation accu-
racy by 2.8%, which corresponds to a 25.2% rel-
ative reduction in error rate. Spline-regularization
also produces a model that outperforms the SVM
and Random Forests baselines in terms of accu-
racy and F1 score.

Ridge logistic regression achieved the best per-
formance in our tests in terms of all accuracy
metric considered. This model required apply-
ing a reasonably large amount of shrinkage to
avoid overfitting and improve validation set per-
formance. We also experimented with applying
spline-regularization on the ridge regression coef-
ficients to smooth them. However, this hurt per-
formance so we did not include it in our results.



Figure 7: Map of Coefficients in Spline-Regularized, Ridge, and Vanilla Logistic Regression.

5 Analysis

The above results show that fitting a smooth-
ing spline on the coefficients of logistic regres-
sion models can serve as an effective regulariza-
tion technique. We plot the vanilla coefficients
against the spline-regularized coefficients and see
that they behave as expected in figure 5. The plots
show a clear shrinkage in the coefficients com-
pared to the coefficients from the vanilla model.
Instead of the counter-intuitive oscillations seen in
the vanilla coefficients (we do not expect similar
consecutive frequencies to have wildly different
coefficients), the spline-regularized model yields a
much smoother map of coefficients which do not
vary as severely from frequency to frequency.

We also investigate the relationship between
ridge and spline regularization further. We do this
by directly comparing the spline-regularized co-
efficients with the ridge coefficients in figures 6
and 7, and observe a high degree of similar-
ity. Overall, it appears that both methods find
roughly the same set of significant frequencies and
shrink the frequency coefficients by similar de-
grees, showing that smoothing splines can have a
regularizing effect quite similar to ridge.

Spline regularization appears to have a slightly
more pronounced smoothing effect over the coef-
ficients (almost making it appear in figure 6 that
the spline-regularized coefficients are a smoothed
version of the ridge coefficients, though this is not
the case), with less drastic oscillation in coefficient
values from frequency to frequency. We see this
again in figure 7 – the spline coefficients appear to
be more smoothly distributed with peaks and lows
matching the ridge coefficients. This agrees with
our intuition that similar frequencies would have
similar coefficients.

6 Conclusion

We explored the use of splines as a regularization
method for logistic regression models. Our find-
ings show that spline-regularized logistic regres-
sion outperforms vanilla logistic regression under
specific conditions. We demonstrate how splines
can be used to improve performance in a sim-
ple speech recognition tasks and find interesting
similarities between ridge regression and spline-
regularization in terms of their effects on the coef-
ficients.

Future work could explore theoretical con-
nections between ridge regression and spline-
regularization. We have also not studied the ro-
bustness of spline-regularization when its assump-
tions are not satisfied. It would also be interesting
to extend this regularization method to a multiple
predictor setting and test its effect on performance.

References
Raphael Couronn, Philipp Probst, and Anne-Laure

Boulesteix. 2018. Random forest versus logistic
regression: a large-scale benchmark experiment.
BMC Bioinformatics, 19(1).

Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. 2001. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York
Inc., New York, NY, USA.

Diego Salazar, Jorge Vlez, and Juan Salazar. 2012.
Comparison between svm and logistic regression:
Which one is better to discriminate? Revista Colom-
biana de Estadstica, 35(2):223–237.

Pete Warden. 2018. Speech commands: A dataset
for limited-vocabulary speech recognition. CoRR,
abs/1804.03209.

https://doi.org/10.1186/s12859-018-2264-5
https://doi.org/10.1186/s12859-018-2264-5
https://revistas.unal.edu.co/index.php/estad/article/view/30268
https://revistas.unal.edu.co/index.php/estad/article/view/30268
http://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1804.03209

