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A B S T R A C T

Open-domain dialog generation is a task that challenges machines to
mimic human conversations. Despite the remarkable progress natu-
ral language generation has seen over the past several years, open-
domain dialog systems still suffer from limitations that hinder their
adoption in the real world. Systems trained with maximum likeli-
hood often generate dull and repetitive responses, ignoring user in-
put. Training on standard datasets from online forums leads to the
generation of inappropriate, biased, or toxic responses. And mod-
els rarely exhibit long-term coherence across multiple dialog turns.
Meanwhile, the predominant approach to dialog generation relies on
black-box neural networks which provide little insight as to what in-
formation they learn (or do not learn) about engaging in dialog.

In light of these issues, this thesis makes two contributions to build-
ing social and interpretable dialog systems. The first part of this thesis
proposes a novel reinforcement learning approach for improving the
social capabilities of open-domain dialog systems. We optimize for
human-centered objectives such as response politeness, diversity, co-
herence, and sentiment. Our interactive human evaluation shows that
these objectives can improve the quality of human-AI interaction and
increase user engagement.

The second part of this thesis investigates the conversational un-
derstanding captured by neural dialog systems using probing. Our
results suggest that standard open-domain dialog systems struggle
with basic skills such as answering questions, inferring contradic-
tion, and determining the topic of conversation. We also find that the
dyadic, turn-taking nature of dialog is not fully leveraged by these
models. By exploring these limitations, we highlight the need for ad-
ditional research into architectures and training methods that can al-
low for capturing high-level information about natural language.

iv



P U B L I C AT I O N S

Material from the following papers was used to create the chapters
of this thesis:

[1] Abdelrhman Saleh, Tovly Deutsch, Stephen Casper, Yonatan
Belinkov, and Stuart Shieber. “Probing Neural Dialog Models
for Conversational Understanding.” In: arXiv Preprint (2020).

[2] Abdelrhman Saleh, Natasha Jaques, Asma Ghandeharioun, Judy
Hanwen Shen, and Rosalind Picard. “Hierarchical Reinforce-
ment Learning for Open-Domain Dialog.” In: Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelligence (2020).

v





A C K N O W L E D G E M E N T S

I would not have been able to finish this thesis without the help and
support of incredible advisers, colleagues, family, and friends. I am
infinitely thankful to my advisers Professor Stuart Shieber and Pro-
fessor Lucas Janson for their wisdom, mentorship, and guidance over
the past year. I would also like to thank Yonatan Belinkov for his in-
sightful feedback and spot-on intuition, without which Chapter 3 of
this thesis would have been impossible.

I cannot begin this thesis without thanking Natasha Jaques. I am very
fortunate to have worked with someone so invested in my growth
and success. Natasha’s contributions were also essential to getting
Chapter 2 of this thesis from conception to publication in one short
summer. I would also like to thank Rosalind Picard for introducing
me to affective computing and changing the way I think about inter-
acting with machines.

I am incredibly grateful to Ramy Baly for introducing me to natural
language processing and patiently helping me as I worked on my
first research project. Thanks to James Glass for making my visit to
NAACL feasible, which is where many ideas for this thesis started
brewing.

I am very lucky to have friends like Gabriel Grand and Mirac Suz-
gun who encouraged me to start doing research and acted as excel-
lent role models during my time in college. Also thank you Leena
Hamad for all the laughter, jokes, and fond memories as I worked on
this thesis.

Finally, I would like to thank my parents Ahmed and Nahla and my
best friend and younger brother Aly for always providing me with
love, support, and encouragement.

vii





C O N T E N T S

i prologue 1

1 introduction 3

1.1 Solving Intelligence . . . . . . . . . . . . . . . . . . . . . 3

1.2 Open-Domain Dialog . . . . . . . . . . . . . . . . . . . . 4

1.3 Why Build Social Systems? . . . . . . . . . . . . . . . . 6

1.4 Why Build Interpretable Systems? . . . . . . . . . . . . 8

ii social dialog systems 11

2 learning via human-centered objectives 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Social, Human-Centered Objectives . . . . . . . . . . . 19

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Results and Discussion . . . . . . . . . . . . . . . . . . . 21

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii interpretable dialog systems 27

3 probing for conversational understanding 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Probing Tasks . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iv epilogue 43

4 looking ahead 45

4.1 Towards Social Dialog . . . . . . . . . . . . . . . . . . . 45

4.2 Towards Interpretable Dialog . . . . . . . . . . . . . . . 46

bibliography 47

ix





Part I

P R O L O G U E





I propose to consider the question, ‘Can machines think?’

— Alan Turing [94]

1
I N T R O D U C T I O N

1.1 solving intelligence

In a very influential 1950 paper published in the journal Mind, Alan
Turing introduced the Turing Test as a way of dealing with the ques-
tion of whether machines can think. The Test took the form of an
“imitation game” where an interrogator would chat over teletype with
two hidden participants, a human and a machine. The conversation
would be natural, open-ended, and about any topic whatsoever. If the
interrogator cannot determine which of the hidden participants is the
machine, then it is said to have passed the Turing Test.

The Turing Test has many attractive features as a benchmark for in-
telligence. It does not answer the question of whether machines can
think (which in Turing’s view is “too meaningless to deserve discus-
sion”). What does it mean for a machine to “think” or “reason” or
“understand” after all? The Test sidesteps these tricky questions and
proposes a criterion that is much more concrete. If a machine is indis-
tinguishable from a human with respect to a certain property, then it
is reasonable to say that the machine has the property in question as
much as a human.

The property in question here is intelligence, and it is assessed
through verbal behavior. Language is so tightly woven in human expe-
rience making it a natural medium for evaluating intelligence.1 Even
more, though, verbal behavior is one of the most fundamental and
special elements of language. Conversation is the first kind of lan-
guage we learn as children, and it is the type of language we most
commonly indulge in, whether we are talking to other people, our
plants, our dogs, or ourselves.

1.1.1 The road ahead

This thesis explores practical ways of building social and interpretable
conversational AI. We argue that these qualities are crucial for build-
ing intelligent conversational agents that are safer and better aligned
with human preferences. In this chapter, we briefly overview the state

1 The Turing Test assumes that mastery of language is a sufficient (but not necessary)
condition for intelligence. This is consistent with evidence from neuroscience [31,
61] which shows that people who have lost the ability to produce and understand
language can still add and subtract, understand algebra, solve logic problems, etc.

3



4 introduction

of open-domain dialog research and justify the need for building so-
cial and interpretable dialog systems. In Chapter 2, we introduce a
novel reinforcement learning approach for training social dialog sys-
tems optimized with human-centered objectives. We find that these
objectives improve interaction quality and increase user engagement.
In Chapter 3, we probe a variety of standard dialog models to inter-
pret what they learn about dialog. Our results suggest that neural
dialog models struggle with basic conversational skills and fail to
leverage the dyadic, turn-taking nature of conversation. In Chapter 4,
we propose some directions of future work for building truly social
and interpretable dialog systems.

1.2 open-domain dialog

Open-domain dialog generation is the problem of building chatbots
that can communicate with humans in natural language. Open-domain
dialog systems are designed to engage in open-ended and unstruc-
tured conversation characteristic of human-human interactions.

Although passing the Turing Test might seem like a reasonable
research goal for conversational AI, dialog researchers study a much
broader set of goals and applications. Dialog systems are currently
being used in therapy to support users struggling with depression,
in education to increase student engagement, and in e-commerce to
provide assistance to customers, among many other applications.

1.2.1 Variants

There are two general approaches to open-domain dialog genera-
tion: retrieval-based and generation-based approaches [45]. Retrieval-
based systems query responses from a large database of scripted
examples. The goal is to match the current conversation with simi-
lar human-written ones and return the same responses. Generation-
based systems generate their responses, often word-by-word, and
are more flexible and generalizable to previously unseen interactions
[109]. For these reasons, we focus on generative models in this thesis.

1.2.2 Learning dialog

We model each conversation as a sequence of turns [u1,u2, . . . ,un]
between two speakers. The speakers alternate and take a single turn
at a time. Each turn is also composed of a sequence of words or to-
kens, ui = [y1, . . . ,ym].

Let Pθ(uk+1 |hk) be the probability of generating the next response
uk+1 given the conversation history, hk = [u1, . . . ,uk], under a prob-
ability distribution parameterized by θ. This distribution is typically
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modeled using neural networks, where θ are the weights or parame-
ters of the network.

The parameter vector θ can be learned using maximum likelihood
estimation and gradient methods given Pθ is differentiable. The goal
here is to learn θ such that under the learned model, the observed
training data is most probable.

Using the law of total probability, Pθ(uk+1 |hk) can be decomposed
to model the probability of generating responses word-by-word:

Pθ(uk+1 |hk) =

Pθ(y1, . . . ,ym |hk) =

m∏
i

Pθ(yi | y1, . . . ,yi−1,hk) (1)

This formulation is preferable since it allows us to model the dis-
crete probability distribution of words, Pθ(yi | y1, . . . ,yi−1,hk), over
some vocabulary V . Thus we can learn θ by maximizing the likeli-
hood of each observed word in our training set. This maximum like-
lihood objective is equivalent to minimizing the cross-entropy loss at
each time-step1: 1The ith word, yi,

in an utterance is
generated at
time-step i

Li = −

|V |∑
j=1

yi,j logPθ(yi,j | y1, . . . ,yi−1,hk) (2)

Here, we choose to represent each word as a one-hot vector, yi ∈
R|V |, where yi,j = 1 if we see the jth vocabulary word at time-step
i. We can learn to generate dialog by minimizing this loss over all
time-steps in our training data. More specifically, for each dialog
[u1,u2, . . . ,un], our model observes u1 and tries to generate u2, then
it observes u1,u2 and tries to generate u3, and so on.

In addition to maximum likelihood estimation, a variety of alter-
native frameworks have also been proposed for language and dia-
log generation [4, 51, 63, 70, 102]. However, despite the promising
results shown by most of these approaches, maximum likelihood esti-
mation remains the predominant approach for training neural dialog
systems.

1.2.3 Limitations

Maximum likelihood training for language generation is both elegant
and intuitive. However, neural dialog models trained with maximum
likelihood suffer from many limitations that limit their adoption and
usefulness in the real world:

1. Standard dialog datasets are collected from tweets, reddit threads,
online forums, and movie scripts. Maximum likelihood training
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on these datasets results in the generation of inappropriate, bi-
ased, and toxic responses present in the training data [20, 36,
37].

2. Models trained with maximum likelihood frequently generate
dull and repetitive responses over represented in the training
data such as “I don’t know” and “see you later" [50, 63, 102].

3. Learning dialog only at the word level (see eq. 2) leads to incon-
sistent and contradictory responses as models struggle to track
long-term, utterance-level goals, personas, and topics [103].

4. Neural models are often trained to map input text to output re-
sponses in an end-to-end manner with no intermediate process-
ing steps. Models lack intermediate task-specific modules for
question answering, intent detection, etc. This provides little in-
sight as to what these models learn about dialog and produces
models that are neither “understandable to their creators nor
accountable to their users” [47].

In the rest of this thesis, we show that social and interpretable dia-
log systems are effective at addressing these limitations.

1.3 why build social systems?

Myths, legends and popular culture are full of examples of social,
human-like machines. A classic Daoist text from the 5

th century BCE
describes a master craftsman who created an “artificial man” when
his skills were questioned by the king. The artificial man later went on
to flirt with the king’s concubines [55]. Building social and humanoid
robots has also been a goal of roboticists for a long time [11]. However,
the importance of building social machines has largely been ignored
outside of robotics. We are used to interacting with AI that does not
care about how we think or feel. And building social systems is of-
ten not a major concern for machine learning researchers. This thesis
takes the position that social intelligence is inextricably intertwined
with human intelligence and cognition and should be a central focus
in designing intelligent dialog systems. As Rosalind Picard explains
in her influential book, Affective Computing [68]:

Computers do not need affective2 abilities for the fanci-2Affective means
relating to emotions,
moods, feelings, and

attitudes.

ful goal of becoming humanoids; they need them for a
meeker and more practical goal: to function with intelli-
gence and sensitivity toward humans.

Four decades ago, Howard Gardner introduced the theory of mul-
tiple intelligences in his landmark book Frames of Mind. Gardner ar-
gued for a broad view of intelligence that took many forms, one of
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which was social intelligence manifested in interpersonal and intrap-
ersonal skills [33]. Today we have evidence that social intelligence
plays a key role in human cognition and behavior. Results from cog- The capacity to

know oneself and to
know others is an
inalienable a part of
the human condition
as is the capacity to
know objects or
sounds.
–Howard Gardner

nitive science, social neuroscience, and social psychology emphasize
the role social intelligence plays in learning, reasoning, rational think-
ing, decision-making, and other cognitive functions [21, 23, 29, 38,
68]. Many scientists hold that the development of large brains in hu-
mans—three times as large as those of their nearest primates—was an
evolutionary response to complex cultural and social challenges. This
notion, termed the social intelligence hypothesis [40], is one of the
most prevalent hypotheses in the study of cognitive evolution today
[2].

Social intelligence, like other forms of intelligence, eludes defini-
tion. Here, we adopt a working definition of social intelligence within
the context of dialog systems. We define social dialog systems as sys-
tems that can both understand social situations and effectively engage
in social interactions. This definition relies on both understanding
and behavior. So a system that can understand, detect, or recognize
emotions would satisfy the first condition and a system that can ex-
hibit these emotions to engage in empathetic conversations would
satisfy the second condition. We view social deftness as a practical
goal for dialog systems to avoid getting mired in philosophical dis-
cussions about the meaning of intelligence. A social dialog system
should be able to understand relationships and its role in them, rec-
ognize intentions and emotions and empathize with humans, and
intentionally influence the outcome of social interactions. Picard [68]
and Breazeal [11] propose possible approaches for implementing af-
fective and social systems in practice.

1.3.1 Social machine learning

Although we are still nowhere near building socially intelligent com-
puters or dialog systems, some recent studies have started incorporat-
ing social intelligence to augment deep learning systems. Social feed-
back from positive facial expressions has been used to improve the
quality of model-generated sketches or doodles [44]. Social learning
of implicit human preferences in dialog has been used to elicit posi-
tive emotions from users [42]. And social influence has been shown to
improve cooperation and coordination in multi-agent reinforcement
learning environments resulting in better performance [43].

In this thesis we focus on learning with social, human-centered ob-
jectives. Chapter 2 proposes a novel hierarchical reinforcement learn-
ing approach for building social dialog systems that can optimize
for these objectives. Our human-centered objectives also help remedy
some of the limitations of maximum likelihood training described in
section 1.2.3. Our objectives encourage the generation of positive sen-
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timent responses and discourage toxic responses to avoid inappropri-
ate outputs. They discourage repetitiveness to avoid dull responses.
And they encourage asking questions and staying on topic to keep
the user engaged. The hierarchical structure of our approach also al-
lows for improving global conversation control at the utterance level,
in addition to the word level, unlike MLE training and previous RL
approaches for dialog.

1.4 why build interpretable systems?

There is currently no consensus on the definition of interpretability
in machine learning. In this thesis, we adopt the definition proposed
by Doshi-Velez and Kim [26]:

interpretability is “the ability to explain or to present in under-
standable terms to a human.”

Open-domain dialog systems often rely on neural black-box mod-
els that are trained end-to-end on chat datasets. This data-driven
approach of mapping input-output pairs using gradient-based learn-
ing has powered the “deep learning revolution” [81] of the past few
years. Deep learning systems trained end-to-end eliminate the need
for hand-crafted features or task-specific modules while consistently
outperforming classic machine learning models in computer vision,
natural language processing, speech processing, and other fields.

However, the flexibility of end-to-end deep learning comes with a
trade-off. Neural models are notorious for their opacity and black-
box nature. It is often unclear what these models learn and why they
make the decisions they do. In response to these issues, a variety of
interpretability and analysis methods have been introduced to shed
light on the inner workings of neural models [8, 27, 35]. One such
approach is probing, which we use in chapter 3 to interpret in “under-
standable terms” the conversational skills captured by neural open-
domain dialog systems.

Here we argue for the importance of building interpretable dialog
systems for safety and evaluation. However, it is worth noting that the
need for interpretability arises for many other equally valid reasons
such as fairness, transparency, reliability, explainability, and account-
ability that we do not address here.

1.4.1 Safety

Conversational AI has the potential to improve the way we inter-
act with technology and can pave the way for new beneficial appli-
cations of AI. The past few years have seen rapid, and large-scale
adoption of virtual assistants such as Alexa, Siri, and Google Assis-
tant with hundreds of millions of AI-enabled devices shipped world-
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wide [72]. However, extending dialog systems to safety-critical appli-
cations, such as mental health and therapy, requires understanding
what these models learn and how they will behave in new environ-
ments. For example, we need to ensure that a social dialog system
trained to influence human emotions is skillful and prudent in its use
of such abilities.

But how can we guarantee the safety of open-domain dialog sys-
tems when it is impossible to validate all possible inputs and interac-
tions? The open-ended nature of these systems means that they are
never completely testable.

Interpretable dialog systems can address some of these safety con-
cerns. Interpretable models can be verified by engineers and domain
experts to ensure models behave as expected, avoiding unintended or
harmful behavior. In chapter 3, we probe a variety of standard dialog
models to interpret whether they learn representations relevant to ba-
sic conversational skills such as answering questions, understanding
user intent, identifying the topic of conversation, and determining
user sentiment. Our results suggest that neural open-domain dialog
systems struggle to learn many of these skills. The limited abilities of
these models could be a result of unintended behavior arising from
the training procedure or the size of the training datasets. Our results
also suggest that these models would fail to generalize to new envi-
ronments. This example highlights the importance of interpretability
in validating the behavior of neural dialog systems.

1.4.2 Evaluation

The development of end-to-end deep learning systems usually in-
volves training a model on a certain end-task, evaluating performance
on that task, modifying the model, then iterating on this procedure.
Belinkov [6] recently proposed a more structured approach for devel-
oping and evaluating deep learning systems that relies on probing,
but could be extended to other analysis techniques. In this approach, “The first step in

solving a problem is
recognizing there is
one.”
— Will Mcavoy

instead of just evaluating performance on the end-task, an additional
collection of intermediate probing tasks can be used to probe the
model for more specific types of understanding relevant to the end-
task. The performance on these intermediate probing tasks can act as
a proxy for performance on the end-task and provide insight to help
improve the model.

To provide a more concrete example, consider a neural dialog model
trained on the end-task of generating dialog. Intermediate probing
tasks relevant to dialog include intent detection or conversational
question answering. We can evaluate the trained model’s performance
on these tasks using probing, and make specific modifications to im-
prove performance on these tasks. For example, if we find that our
model struggles with question answering we can augment it with a
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multi-task question answering objective or we can incorporate hand-
crafted features relevant to question answering. More details on prob-
ing are given in chapter 3.

The need for reliable evaluation metrics is one of the most press-
ing problems facing dialog generation and machine learning today
[93]. Perplexity is often used as an evaluation metric for generative
language models, which is closely related to cross-entropy (see eq.
2) and measures how well a model fits the training set. But perplex-
ity and other standard metrics such as BLEU and ROUGE scores do
not provide a nuanced enough picture of what dialog models learn
about language, not to mention that these metrics weakly correlate
with human judgements of interaction quality [28, 34, 57]. We hope
that probing can provide an alternative more reliable approach for
evaluating and developing open-domain dialog systems.



Part II

S O C I A L D I A L O G S Y S T E M S





The rules of conversation are, in general, not to dwell on any one subject,
but to pass lightly from one to another without effort or affectation;

to know how to speak about trivial topics as well as serious ones.

— The 18th C. Encyclopedia of Diderot [24]

2
L E A R N I N G V I A H U M A N - C E N T E R E D O B J E C T I V E S

2.1 introduction

Current generative models for dialog suffer from several shortcom-
ings that limit their usefulness in the real world. As discussed in
section 1.2.3, training on standard dialog datasets collected online or
from movie scripts often leads to malicious, aggressive, biased, or
offensive responses [20, 36, 37, 97]. Maximum likelihood estimation
(MLE) training of such models often leads to the generation of dull
and repetitive text [50]. In addition, models may have difficulty track-
ing long-term aspects of the conversation, and evidence has shown
that they do not adequately condition on the conversation history in
generating responses [77].

Reinforcement Learning (RL) is a powerful paradigm that allows
dialog models to optimize for non-differentiable metrics of conver-
sation quality, and thereby helps overcome the above problems. In
this chapter, we use RL to learn from self-play; the model talks to a
fixed copy of itself, and computes reward functions on the generated
conversation. We propose social, human-centered rewards, such as
minimizing toxicity of a conversation, in order to limit inappropriate
responses. We also design rewards based on the psychology of good
conversation (e.g. [9, 10, 101]), and reward recently proposed conver-
sation metrics that are associated with improved human judgments
of conversation quality [80].

Applying RL to open-domain dialog generation is a challenging
problem. Most prior approaches (e.g. [42, 50, 51, 70, 107]) learn to
model rewards at the word level, meaning that the reward is applied
to affect the probability of generating each word in the response.
Such low-level control makes credit assignment especially challeng-
ing, since high-level rewards based on multiple conversation turns
must be applied to specific words.

To overcome these challenges, we leverage hierarchical reinforce-
ment learning (HRL) to model rewards at the utterance level, improv-
ing the flexibility of dialog models to learn long-term, conversational
rewards. Specifically, we propose a novel approach, Variational Hi-
erarchical Reinforcement Learning (VHRL), which uses policy gradi-
ents to adjust the prior probability distribution of the latent variable

13



14 learning via human-centered objectives

learned at the utterance level of a hierarchical variational model. We
show that this approach allows for improved learning of conversa-
tional rewards that are not modeled well at the word level.

To evaluate our models, we not only compute automatic metrics,
but also conduct an interactive human evaluation, in which humans
chat live with our bots about anything they choose. This represents
a more realistic test of real-world generalization performance than is
typically employed when testing RL models in the same environment
in which they were trained.

In summary, this chapter makes the following contributions: a) De-
velops a new technique, VHRL, for hierarchical control of variational
dialog models; b) Demonstrates the effectiveness of training open-
domain dialog models with VHRL and self-play under both human
evaluation and automatic metrics; and c) Introduces and compares
several reward functions for guiding conversations to be less toxic
and repetitive, and more engaging, positive, contingent on user in-
put. In addition, we release code for our evaluation platform and our
models at https://github.com/natashamjaques/neural_chat.

2.2 related work

2.2.1 Reinforcement learning for dialog

Improving dialog models with RL is a difficult problem, and past
work has largely been restricted to task-oriented dialog systems, which
have a limited number of task-specific actions (e.g. [56, 86]). Attempts
to apply RL to open-domain dialog generation are less common. Even
in this setting, authors may choose to use a highly restricted action
space, for example, using RL to choose dialog acts for conditional gen-
eration [105]. Li et al. [50] applied deep RL to optimize for rewards
such as ease of answering. RL has also been used to optimize for re-
wards from adversarial discriminators trained to distinguish human-
generated from model-generated text [51, 107].

Sentiment has been used as a reward in an RL setting for dialog
[84]. Jaques et al. [42] optimize for sentiment and several other con-
versation metrics by learning from a static batch of human-bot conver-
sations using Batch RL. We believe we are the first to propose using
RL to reduce toxicity in an open-domain dialog setting, in order to
ensure the model produces more appropriate and safe conversations.

Hierarchical models have been investigated extensively for language
modeling. These models take advantage of the natural hierarchical
structure of language, decomposing input into utterances at one level,
and words at another. However, attempts to apply hierarchical RL
(HRL) to dialog have so far been limited to task-oriented dialog sys-
tems [12, 66, 91, 108]. To the best of our knowledge, we are the first
to apply HRL to open-domain dialog generation.

https://github.com/natashamjaques/neural_chat


2.3 background 15

2.2.2 Hierarchical reinforcement learning

Many approaches have been proposed for building hierarchical agents
within the context of reinforcement learning for games and robotics
[3, 25, 62, 69, 90, 96]. The options framework proposed by Sutton, Pre-
cup, and Singh [90] is one popular approach for HRL. At the bottom
level of the hierarchy, a set of options (or workers) which are poli-
cies over actions interact with the environment until terminated by the
agent. At the top level, a policy over options (or manager) selects op-
tions to be executed until termination, at which point another option
is picked and the process is repeated. The different levels of temporal
abstraction introduced by this hierarchy allows for better long-term
planning relative to traditional, flat RL techniques.

A major focus of HRL has been on sub-goal or option discovery for
training worker policies. Bottom-level policies are often learned us-
ing handcrafted sub-goals [48, 92], intrinsic rewards [96], or pseudo-
rewards [25], while the manager policy is learned using extrinsic re-
wards from the environment. Our approach also allows for optimiz-
ing different rewards at different levels of the hierarchy, thus creating
distinct goals for the worker and the manager. However, unlike other
HRL approaches, we expose both the worker and manager policies
to extrinsic rewards and add weight hyper-parameters to regulate
the effect of the rewards at each level. This remedies a weakness of
pseudo-reward methods where a worker only focuses on achieving
its sub-goals while disregarding the effect on the extrinsic environ-
ment reward.

2.3 background

A common approach to dialog modeling is to use a hierarchical sequence-
to-sequence architecture, such as the Variational Hierarchical Recur-
rent Encoder Decoder (VHRED) [83]. We adopt VHRED here, follow-
ing previous work which has found it to be the most effective version
of several related architectures [34].

As shown in Figure 1, VHRED uses three recurrent networks to
generate the next utterance in a conversation. The word-level encoder
RNN, fe, operates on the words (tokens) of the input utterance ut =
[y1,y2, ...yn], and encodes them into a representation het = fe(ut).
This is fed into a context RNN,fc, which forms the upper level of
the hierarchy – it is updated only after each utterance, rather than
each token. Because it updates less frequently, the context RNN is
potentially better able to track longer-term aspects of the conversation.
The context RNN outputs hct = f

c(het ,hct−1), which is used to produce
an utterance embedding zt. This is fed into the word-level decoder
RNN fd, which produces the output utterance ut+1, one token at a
time.
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Figure 1: VHRED model architecture, where the embedding vector z for
each utterance is sampled from a multivariate normal distribution.

The model is similar to a variational autoencoder; hct is fed into
fully connected layers that predict the mean µ and variance Σ of
a multivariate normal distribution. Through a KL-divergence con-
straint and the reparameterization trick, the model learns a proba-
bility distribution over the embedding vector zt of each utterance,
pθ(zt|u6t). Formally, the model can be described as follows:

het = f
e(ut) (3)

hct = f
c(het ,hct−1) (4)

µ,Σ = f(hct) (5)

pθ(zt|u6t) = N(zt|µ,Σ) (6)

p(ut+1|u6t) = f
d(hct , zt) (7)

2.3.1 Reinforcement learning

We adopt the standard reinforcement learning framework where given
the environment state s ∈ S, an agent takes an action a ∈ A according
to its policy π : S×A → [0, 1], and receives a reward r : S×A → R.
The environment then transitions to the next state according to the
transition function P : S×A× S → [0, 1]. The agent seeks to maxi-
mize the total expected future reward (long-term return):

J(π) = Eπ

[ ∞∑
t=0

γt rt+1 | s0

]
(8)

given a starting state s0 and a discount factor γ ∈ [0, 1].

2.3.2 Policy gradient methods

Policy gradient methods learn parameterized policies πθ(a|s) for solv-
ing RL problems with θ ∈ RNθ being a learned parameter vector.
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The policy gradient theorem [89] derives the gradient of the expected
return with respect to the policy parameters. In this chapter, we use
REINFORCE [104] which approximates the gradient at each time step
t using

∇J(πθ) ≈ Rt∇θ lnπθ(at|st) (9)

where Rt =
∑T
k=t+1 γ

k−t−1rk is the observed future reward for
an episode that ends at T . The expected return is maximized with
gradient ascent. This is equivalent to minimizing the loss function
Lθ = −Rt lnπθ(at|st).

In continuous action spaces, actions a ∈ RNa are sampled from
a continuous probability distribution, such as a multivariate normal
distribution. In this case, the policy π can be parameterized as a prob-
ability density function over actions,

πθ(a|s) =
1√

(2π)Na |Σ|
exp

(
−
1

2
(a − µ)TΣ−1(a − µ)

)
(10)

where the actions are sampled from a multivariate normal distribu-
tion N

(
µ(s;θ),Σ(s;θ)

)
. Here the mean µ : RNs ×RNθ → RNa and

covariance matrix Σ : RNs ×RNθ → RNa×Na are defined in terms
of the current state s and the policy parameters θ. The density of the
probability of actions, rather than the probability, is learned in the
continuous case.

2.4 approach

We pose dialog generation as an RL problem where the state, st, is
all the previous dialog turns read by the model up to utterance t, and
the rewards are calculated based on the dialog history and generated
utterance.

Previous approaches which have applied RL to language genera-
tion have done so at the word level, where the policy π models the
distribution over outputting the next word [42, 50, 51, 70, 107]. In-
stead, we cast our problem in the hierarchical reinforcement learning
framework by considering the context RNN as the manager responsi-
ble for utterance-level decisions, and the decoder RNN as the worker
responsible for word-level decisions.

We leverage the fact that VHRED learns a probability distribution
over latent variable zt as a decision making component at the ut-
terance level. Starting with an MLE pre-trained VHRED model, we
apply REINFORCE to tune the variational component, treating zt as
a continuous action. Thus, the manager policy is defined by the distri-
bution of the prior latent variable pθ(zt|st), while the worker policy
is the distribution of the output words πθ(ŷ1, . . . , ŷt|zt, st), which is
parameterized by the manager decisions.
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More specifically, the probability of a worker action at is the joint
probability of the generated utterance conditioned on the manager’s
decision zt,

πθ(at|zt, st) =
T∏
t=1

πθ(ŷt|zt, st, ŷ1, . . . , ŷt−1) (11)

while the probability of a manager action is given by the multivariate
normal probability density function in Eq. 10.

We propose a new approach which allows both the worker and
manager to jointly optimize total expected future return by minimiz-
ing the following loss:

Lθ = −
(
αRmt lnpθ(zt|st) +βRwt lnπθ(at|zt, st)

)
(12)

where Rmt =
∑T
k=t+1 γ

k−t−1rmk is the manager’s observed future re-
ward and Rwt =

∑T
k=t+1 γ

k−t−1rwk is the worker’s observed future
reward. This formulation is analogous to REINFORCE as it shifts the
model’s decisions towards actions associated with positive rewards
and discourages actions associated with negative rewards. The scalars
α,β are hyperparameters used to regulate the effect of the rewards at
each level of the hierarchy. We call our approach Variational Hierar-
chical Reinforcement Learning (VHRL).

Unlike recently proposed HRL approaches which train the worker
and manager separately as decoupled components [48, 62, 96], we
train our entire model jointly, end-to-end. This implies that the worker
(decoder RNN) gradients flow through the manager (context RNN), and
both flow through the encoder RNN. We make this decision for two
reasons. First, zt lives in a continuous high dimensional action space,
making it difficult to learn a good policy pθ without a signal from the
decoder. Second, this gives the decoder control over the representa-
tions learned by the encoder, facilitating optimization. As an ablation
study, we experiment with decoupled decoder and encoder training,
and find that the joint approach performs better.

The proposed loss allows for optimizing different rewards at differ-
ent levels, which can be used to incorporate prior knowledge about
the problem. For example, rewards relevant to the global dialog his-
tory could be considered only by the manager through rmk , rather
than the worker. Conversely, rewards relevant to the word-by-word
output could be considered by the worker through rwk and not the
manager. For simplicity, we optimize for all rewards at both levels
(i.e. rwk = rmk ) and achieve promising results.

Similar to previous work applying RL to dialog [50, 105] we use
self-play to simulate the interactive environment in which the agent
learns. We initialize conversations with randomly sampled starting
sentences from the training set and let our model interact with a user
simulator which is a fixed copy of itself. We limit each model to 3 ad-
ditional turns for a total conversation length of 7 utterances. Limiting
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the length of simulated interactions is important since we found that
long conversations are more likely to degenerate and go off-topic.

2.5 social , human-centered objectives

Here we introduce several metrics for improving the quality of a con-
versation, which can be optimized using RL by treating them as re-
wards. Several metrics are inspired by previous work, but we also
propose novel metrics such as toxicity.

sentiment : Emotion is important for creating a sense of under-
standing in human conversation [101]. Building on previous
work which used sentiment as a reward (e.g. [42, 84], we lever-
age a state-of-the-art sentiment detector, DeepMoji [32], to re-
ward generated utterances associated with positive sentiment
emojis.

question : Asking questions is an important active listening skill,
and can improve the quality of interactions [9]. Thus, we pro-
vide a positive reward when both a question word and a ques-
tion mark are present in a generated response to encourage ask-
ing questions.

repetition : Repetitiveness has been frequently identified as a short-
coming of dialog models trained with MLE [50]. We adopt a
measure of repetitiveness recently proposed by See et al. [80],
which was shown to be highly related to human judgments of
conversation quality and engagement. Unlike previous work,
we directly optimize for this metric using RL. To discourage
repetition, our model receives a negative reward for repeating
words it has produced in previous turns, excluding stop words
and question words.

semantic similarity : Paraphrasing and style matching are im-
portant in facilitating good conversation [41, 101], however most
dialog models are not good at conditioning effectively on the
conversation context [77]. Therefore, we reward the cosine simi-
larity between the simulated user and bot utterances in embed-
ding space, as in [42, 80]. However, instead of using word2vec
embeddings we make use of the Universal Sentence Encoder
[14] as it better correlates with human judgment when evaluat-
ing dialog quality [28].

“We want to avoid
letting computers be
awful to people just
because people are
awful to people.”
–Robyn Speer

toxicity : Open-domain dialog systems generate malicious, offen-
sive, and biased language when trained on standard datasets
scraped from online forums and movie scripts [20, 36, 37]. We
address this issue by penalizing our model for producing toxic
responses as determined by a Naive Bayes-Logistic Regression
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classifier [74] trained on a dataset of 160K comments from the
Toxic Comment Classification Challenge1. The comments are la-
beled for toxicity, identity hate, obscenity, threats, and insults.
We provide the probability of toxicity as a negative reward to
penalize our dialog model for producing toxic responses.

2.6 experiments

All of our models are trained on a corpus of 109K conversations
scraped from www.reddit.com/r/CasualConversations. We use VHRED
[82], which is described in Section 2.3, as our baseline model.

We test these dialog models against three RL techniques. We in-
corporate transfer learning by initializing all of our RL models with
the MLE pre-trained weights of the VHRED model. Our REINFORCE
model applies the REINFORCE algorithm described in Section 2.3.2
at the word-level, to affect the probability of generating each word
in the output. In contrast, VHRL incorporates additional rewards at
the utterance level to improve the continuous utterance embedding
zt. We compare these methods with a recently proposed approach
for learning offline from a static batch of conversation data, Batch
Ψ-learning [42]. Finally, we include an ablated version of the VHRL
model that uses decoupled training; i.e. training alternates between
optimizing the different levels of the hierarchy (manager and worker),
with the crucial difference that the worker gradients are stopped so
they do not update the manager. This Decoupled VHRL ablation is
more typical of standard HRL approaches used in maze and Atari
games [48, 62, 96].

2.6.1 Human evaluation

In addition to computing automatic measures, we conduct an inter-
active human evaluation, in which human users are able to chat with
each of our bots in an open-ended, free-form setting. After chatting
for at least three turns with each bot, users can end the conversation
and rate the overall conversation quality, fluency, diversity, and the
degree to which the bot’s responses were contingent on the user’s
input. Because users can choose to chat as long as they like with any
particular bot, we also measure chat length as a sign of engagement,
following prior work [112].

We conducted two human evaluations by recruiting Mechanical
Turk Workers to evaluate models on an open-source online platform
at https://neural.chat/ [34]. We recruited 50 Workers for each study.
The first study compares the quality of the proposed reward func-
tions. The second study assesses the efficacy of the proposed tech-
niques when optimizing for all of the rewards jointly. We argue that

1 https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

www.reddit.com/r/CasualConversations
https://neural.chat/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
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Sentiment Question Semantic Sim. Repetition Toxicity

[Usr]: hello!
[Bot]: i’m in my
sunroom a lot and
it’s a great feeling!
[Usr]: sounds fun
[Bot]: i’m excited!

[Usr]: hi there!
[Bot]: what do
you do for fun?
[Usr]: i read books
[Bot]: what do you
like to do in your life?

[Usr]: i like to
listen to ed sheeran
[Bot]: and what
genre is it?
[Usr]: pop
[Bot]: any recomm-
endations?

[Usr]: what do you do?
[Bot]: i’m a reservoir
engineer
[Usr]: cool. i am still
in college
[Bot]: today is my
first day of vacation

[Usr]: you’re so stupid
[Bot]: you’re cute
[Usr]: i hate you
[Bot]: but i don’t
know why

Table 1: Chat examples showing that our proposed VHRL technique can be
used to optimize for human-centered rewards.

Figure 2: Reward Learning curves for the proposed metrics. The x-axis rep-
resents number of RL training steps. The non-RL VHRED baseline
is displayed for reference. REINFORCE and VHRL learn to outper-
form the baselines. Shaded area is standard deviation.

this form of evaluation represents a more ambitious test of generaliza-
tion than is typically attempted when deep RL algorithms are tested
in the same environment in which they were trained, since human
users are free to type any text they choose.

2.7 results and discussion

We first assess whether RL training can allow dialog agents to learn
to optimize our human-centered metrics of conversation quality. Ta-
ble 1 shows samples of conversations from VHRL trained with each
of the rewards, and figure 2 shows the performance of the RL and
baseline models on those five metrics. The RL models are able to
improve generated conversations above the baseline VHRED model
with which they are initialized, improving sentiment and semantic
similarity, asking more questions, and reducing repetition and toxic-
ity.

While both REINFORCE and VHRL are equally able to learn to
optimize toxicity and sentiment, VHRL outperforms REINFORCE on
repetition and semantic similarity. We believe this is because senti-
ment and toxicity are more closely linked to the choice of words used
to form a sentence, and thus are able to be learned at the word-level.
In contrast, modeling whether a sentence has occurred earlier in the
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Figure 3: Training with RL to reduce toxicity decreases the percentage of
generated utterances containing swear words.

conversation and is thus being repeated is much harder to learn at
word-level granularity, and can be optimized more easily at the utter-
ance level using VHRL. Similarly, making a response more similar to
the previous response is also better modeled at the utterance level.

Note that REINFORCE outperforms VHRL on the question metric.
This is because REINFORCE quickly learns to ask a single, repeated
question, allowing it to trivially optimize the reward function. Using
reward functions which are too easily exploitable can limit the effec-
tiveness of RL for dialog, a finding also noted by Jaques et al. [42].
Here we propose new reward functions, such as toxicity, that are less
easy to exploit. By optimizing a combination of these rewards with
sometimes conflicting objectives (as we explore in Section 2.7.1), we
can show that the reward function is difficult to trivially exploit, as
suggested by Deb [22].

As an additional post-hoc test of whether reducing our toxicity
metric actually reduces undesirable behaviors, we count the number
of swear words used by each model in response to the 10,000 utter-
ances in the test set. Figure 3 shows the results. Using RL to lower the
toxicity reduces frequency of swearing to less than one third of the
baseline amount.

We conducted an interactive human evaluation, as described in Sec-
tion 2.6.1, in order to assess how well the proposed reward functions
relate to human judgments of conversation quality; the results are
presented in Table 2. Each bot was trained with respect to one of the
5 reward functions, and the results are ordered from least to highest
scoring rewards in terms of summed human ratings. As is evident in
the table, the VHRL model trained to optimize for asking questions
achieved the highest ratings, followed by VHRL minimizing repeti-
tion, and VHRL minimizing toxicity. This provides evidence that our
proposed rewards lead to enhanced conversation quality as judged
by human users, and that VHRL provides an effective method for
learning them.
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Model Quality Fluency Diversity Cont. Total

Similarity
REINFORCE 2.71 4.20 3.86 2.73 12.10

VHRL 2.51 3.92 3.67 2.22 11.14

Sentiment
REINFORCE 2.80 4.55 3.90 2.43 12.43

VHRL 2.72 4.30 4.32 2.50 12.28

Toxicity
REINFORCE 2.71 4.12 4.06 2.55 11.98

VHRL 2.76 4.58 4.34 2.64 12.82

Repetition
REINFORCE 2.74 4.02 4.28 2.30 11.92

VHRL 3.00 4.39 4.41 2.84 13.12

Question
REINFORCE 2.39 4.08 2.45 2.31 9.80

VHRL 3.27 4.86 4.47 2.88 14.14

Table 2: Interactive human evaluation results comparing the proposed re-
ward functions, REINFORCE, and VHRL. Ratings are on Likert
scale (1-7). Higher is better.

Model Quality Fluency Diversity Contingency Total Chat Len.

Batch Ψ [42] 2.17 3.89 3.13 1.98 11.17 11.44

Decoupled VHRL 2.46 4.15 3.61 2.02 12.24 12.14

REINFORCE 2.89 4.47 3.67 2.80 13.84 11.60

VHRED 2.84 4.53 4.43 2.47 14.27 10.94

VHRL (ours) 2.91 4.65 4.26 2.67 14.49 12.84

Table 3: Interactive human evaluation results comparing different RL train-
ing approaches optimizing for all five rewards, ordered by overall
total rating score. Ratings are on a Likert scale (1-7).

2.7.1 Learning combined rewards

As described in the previous section, optimizing for an overly sim-
plistic metric (such as asking questions) can lead algorithms such as
REINFORCE to trivially exploit the reward function at the expense of
conversation quality. The five metrics proposed here do not fully en-
compass what it means to have a good conversation when optimized
separately. Previous work found that optimizing individual metrics
can actually reduce human judgments of conversation quality below
the score of the MLE baseline [42].

Therefore, instead of optimizing for individual metrics, we also
train a variety of models to optimize for a combination of all five pro-
posed rewards, making the reward function more complex and less
easily exploited. The results are shown in Table 3, which is ordered
from least to highest summed human ratings. All models proposed
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here, including the MLE baselines, outperform prior work by Jaques
et al. [42]. The ablated version of our approach, Decoupled VHRL,
performs poorly, suggesting our proposed joint training scheme for
VHRL is an important component of the algorithm.

Finally, in comparing the RL techniques to the VHRED baseline
on which they were based, we see that a naïve application of the
REINFORCE algorithm does not lead to overall improvements in hu-
man ratings of conversation quality. While the language generated by
the REINFORCE model is less toxic and more positive, this comes at
the cost of a slight reduction in overall conversation quality. In con-
trast, VHRL is the only technique that allows the model to optimize
for reducing toxicity, improving sentiment, etc., while increasing the
overall human judgments of the quality of the conversation. Note
that the chat length is higher with VHRL, suggesting users are more
interested and engaged when chatting with VHRL versus the other
models. Thus, VHRL can be used to optimize for metrics that make
the dialog model more safe and appropriate for a particular applica-
tion domain, while maintaining the ability to have an enjoyable and
engaging conversation with human users.

2.7.2 Uncertainty quantification

The standard errors for the human evaluation ratings in tables 2 and
3 were in the range of [0.2, 0.3]. These standard errors were large rela-
tive to the observed differences in performance implying that there is
no statistically significant difference between our proposed approach
and the baselines. This is partly due to our relatively small sample
size and the noisiness of human evaluation. A power analysis [16]
estimates that n = 145 Mechanical Turk Workers are required for a
two-sample t-test of a difference in means given a power of 80%, a
significance level of 5%, and an effect size of 0.5 on the (1-7) Likert
scale. However, the human evaluation results, combined with the au-
tomatic metrics, are still suggestive of the effectiveness of VHRL over
flat baselines for learning long-term, conversational rewards.

2.8 conclusion

We have demonstrated that RL can be used to improve the outputs of
an open-domain dialog model with respect to human-centered met-
rics of conversation quality. For example, RL can reduce the toxicity of
the generated language, a problem that has previously hindered de-
ployment of these systems to the real world. By developing metrics
tailored to a particular application domain (for example, increasing
politeness for a technical-support system), these techniques could be
used to help open-domain dialog models integrate with real-world
products. We have shown that our proposed VHRL technique is most
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effective for optimizing long-term conversation rewards, and for im-
proving conversation quality while improving metrics like toxicity.





Part III

I N T E R P R E TA B L E D I A L O G S Y S T E M S





Conversation. What is it? A Mystery! It’s the art of never seeming bored,
of touching everything with interest, of pleasing with trifles,

of being fascinating with nothing at all.

— Guy de Maupassant [15]

3
P R O B I N G F O R C O N V E R S AT I O N A L
U N D E R S TA N D I N G

3.1 introduction

Open-domain dialog systems often rely on neural models for lan-
guage generation that are trained end-to-end on chat datasets. End-
to-end training eliminates the need for hand-crafted features and task-
specific modules (e.g. for question answering or intent detection),
while delivering promising results on a variety of language genera-
tion tasks including machine translation [5], abstractive summariza-
tion [73], and text simplification [100].

However, current generative models for dialog suffer from several
shortcomings that limit their usefulness in the real world. Neural
models can be opaque and difficult to interpret, posing barriers to
their deployment in safety-critical applications such as mental health
or even customer service [8]. End-to-end training provides little in-
sight as to what these models learn (or do not learn) about engaging
in dialog. Open-domain dialog systems also struggle to maintain ba-
sic conversations frequently ignoring user input [77] while generating
irrelevant, repetitive, and contradictory responses [50, 51, 75, 103]. Ta-
ble 4 shows examples from standard dialog models which fail at basic
interactions – struggling to answer questions, infer meaning, and un-
derstand conversational context.

In light of these limitations, this chapter aims to answer the follow-
ing questions: (i) do neural dialog models effectively encode informa-
tion about the conversation history? (ii) do neural dialog models learn
basic conversational skills through end-to-end training? (iii) and to
what extent do neural dialog models leverage the dyadic, turn-taking
structure of dialog to learn these skills?

To answer these questions, we propose a set of 8 probing tasks to
measure the conversational understanding of neural dialog models.
Our tasks require high-level understanding of language and include
question classification, intent detection, natural language inference,
and commonsense reasoning. We also design perturbation experi-
ments designed to test if these models fully exploit dialog structure
during training. These experiments entail breaking the dialog struc-
ture by training on shuffled conversations and measuring the effects
on probing performance and perplexity.

29
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Question
Answering

Inference &
Entailment

Intent
Detection

Emotional
Understanding

[Usr]: What do you
do for a living?
[Bot]: I’m from
south america, lol

[Usr]: what’s your
favorite food?
[Bot]: I love food
[Usr]: you like food?
[Bot]: no, I don’t

[Usr]: Can you give
me music recom-
mendations?
[Bot]: I don’t know
what I want to do
with my life.

[Usr]: I feel so
miserable
[Bot]: I’m afraid it’s
too much for me.

Table 4: Examples from open-domain dialog systems struggling with simple
conversational skills.

We experiment with both recurrent [88] and transformer-based [95]
open-domain dialog models. We also analyze models with different
sizes and initialization strategies, training small models from scratch
and finetuning large pre-trained models on dialog data. Thus, our
study covers a variety of standard models and approaches for open-
domain dialog generation. Our analysis reveals three main insights:

1. First, dialog models trained from scratch on chat datasets per-
form poorly on the probing tasks, suggesting that they strug-
gle with basic conversational skills. Large, pre-trained models
achieve much better probing performance but are still on par
with simple baselines.

2. Second, neural dialog models fail to effectively encode informa-
tion about the conversation history and the current utterance. In
most cases, simply averaging the word embeddings is superior
to using the learned encoder representations. This performance
gap is smaller for large, pre-trained models.

3. Third, neural dialog models do not fully leverage the dyadic,
turn-taking nature of conversation. Shuffling conversations in
the training data had little impact on perplexity and probing
performance. This suggests that breaking the dialog structure
did not significantly affect the quality of learned representa-
tions.

Our code integrates with and extends ParlAI [60], a popular open-
source platform for building dialog systems. We also publicly release
all our code at https://github.com/AbdulSaleh/dialog-probing, hop-
ing that probing will become a standard method for interpreting and
analyzing open-domain dialog systems.

3.2 related work

Evaluating and interpreting open-domain dialog models is notori-
ously challenging. Multiple studies have shown that standard evalu-
ation metrics such as perplexity and BLEU [64] correlate very weakly

https://github.com/AbdulSaleh/dialog-probing
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with human judgements of conversation quality [28, 34, 57]. This has
inspired multiple new approaches for evaluating dialog systems. One
popular evaluation metric involves calculating the semantic similarity
between the user input and generated response in high-dimensional
embedding space [28, 34, 57, 65, 105, 111]. More recently, Ghande-
harioun et al. [34] proposed calculating conversation metrics such
as sentiment and coherence on self-play conversations generated by
trained models. Similarly, Dziri et al. [28] use neural classifiers to
identify whether the model-generated responses entail or contradict
user input in a natural language inference setting.

To the best of our knowledge, all existing approaches for evaluat-
ing the performance of open-domain dialog systems only consider
external model behavior in the sense that they analyze properties
of the generated text. In this study, we are interested in exploring
internal representations instead. This is motivated by the fact that un-
derstandable internal behavior is crucial for interpretability and can
oftentimes be a prerequisite for effective external behavior.

Outside of open-domain dialog, probing has been applied for ana-
lyzing natural language processing models in multiple domains such
as machine translation [7] and visual question answering [87]. Prob-
ing is also commonly used for evaluating the quality of “universal”
sentence representations which are trained once and used for a vari-
ety of applications [1, 18] (e.g. InferSent [17], SkipThought [46], USE
[14]). Along the same lines, natural language understanding bench-
marks such as GLUE [99] and SuperGLUE [98] propose a set of di-
verse tasks for evaluating general linguistic knowledge. Our analysis
differs from previous work since it is focused on probing for conver-
sational skills that are more relevant to dialog generation.

3.3 methodology

3.3.1 Models and data

In this study, we focus on the three most widespread dialog architec-
tures: recurrent neural networks (RNNs) [88], RNNs with attention
[5], and Transformers [95]. We use the ParlAI platform [60] for build-
ing and training the models. We train models of two different sizes
and initialization strategies. Small models (≈ 14M parameters) are
initialized randomly and trained from scratch on DailyDialog [53].
Large models (≈ 70M parameters) are pre-trained on WikiText-103

[59], and then finetuned on DailyDialog.
DailyDialog [53] is a dataset of 14K train, 1K validation, and 1K

test multi-turn dialogs collected from an English learning website.
The dialogs are of much higher quality than datasets scraped from
Twitter or Reddit. WikiText-103 [59] is a dataset of 29K Wikipedia
articles. For pre-training the large models, we format WikiText-103 as
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Figure 4: Probing setup. Dotted arrows emphasize that probing is applied
to frozen models after dialog training. Only the parameters of the
classifier module are learned during probing.

a dialog dataset treating each paragraph as a conversation and each
sentence is an utterance.

3.3.2 Probing experiments

In open-domain dialog generation, the goal is to generate the next ut-
terance or response, ut+1, given the conversation history [u1, . . . ,ut].
First, we train our models on dialog generation using a maximum-
likelihood objective [88]. We then freeze these trained models and use
them as feature extractors. We run the dialog models on text from the
probing tasks and use the internal representations as features for a
two-layer multilayer perceptron (MLP) classifier trained on the prob-
ing tasks as in figure 4.

The assumption here is that if a model learns certain conversational
skills, then knowledge of these skills should be reflected in its inter-
nal representations. For example, a model that excels at answering“Whatever you

cannot understand,
you cannot possess.”

–Johann Wolfgang
von Goethe

questions would be expected learn useful internal representations for
question answering. Thus, the performance of the probing classifier
on question answering can be used as proxy for learning this skill.
We extend this reasoning to 8 probing tasks designed to measure a
model’s conversational understanding.

Our probing experiments look at three types of internal represen-
tations:

word embeddings : To get the word embeddings representations,
we averaged the word embeddings of the previous utterances
[u1, . . . ,ut−1] and the current utterance ut and concatenated
them. We used the dialog model’s encoder embedding matrix.

encoder state : For the the encoder state, we extracted the en-
coder outputs after running it on the entire probing task input
(i.e. the full conversation history, [u1, . . . ,ut]). Encoder states re-
fer to the representations passed to the decoder for generation
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and are thus different for each architecture. For RNNs we used
the last encoder hidden and cell states. For RNNs with atten-
tion we averaged the encoder hidden states corresponding to
the previous utterances [u1, . . . ,ut−1] and the current utterance
ut and concatenated them, in addition to the last cell state. Sim-
ilarly, for Transformers, we averaged the encoder outputs corre-
sponding to the previous utterances and the current utterance
and concatenated them.

combined : The combined representations are the concatenation of
of the word embeddings and encoder state representations.

We also use GloVe [67] word embeddings as a simple baseline. We
encode the probing task inputs using the word embeddings approach
described above. We require that GloVe and all models of a certain
size (small vs large) share the same vocabulary for comparability.

3.3.3 Perturbation Experiments

We also propose a set of perturbation experiments designed to mea-
sure whether dialog models fully leverage dialog structure for learn-
ing conversational skills. We create an additional dataset by shuffling
the order of utterances within each conversation in DailyDialog. This
completely breaks the dialog structure and utterances no longer nat-
urally follow one another. We train separate models on the shuffled
dataset and evaluate their probing performance relative to models
trained on ordered data.

3.3.4 Uncertainty quantification

There are two sources of uncertainty in our experiments: the training
of the probing classifier, and the training of the dialog models.1 We
retrain the MLP until the standard errors are negligible to account for
the first source of uncertainty. We do not quantify the second source
of uncertainty but our results are still relevant in practice and are
suggestive of certain limitations of open-domain dialog systems.

3.4 probing tasks

The probing tasks selected for this study measure conversational un-
derstanding and skills relevant to dialog generation. Some of the
tasks are inspired by previous benchmarks [99], while others have
not been explored before for probing. Examples are in Table 5.

trec : Question answering is a key skill for effective dialog systems.
A system that deflects user questions could seem inattentive or

1 This is caused by different random initializations, batching order, etc
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indifferent. In order to correctly respond to questions, a model
needs to determine what type of information the question is
requesting. We probe for question answering using TREC ques-
tion classification dataset [52], which consists of questions la-
beled with their associated answer types.

dialoguenli : Any two turns in a conversation could entail each
other (speakers agree, for example), or contradict each other
(speakers disagree), or be unrelated (speakers changing topic of
conversation). A dialog system should be sensitive to contradic-
tions to avoid miscommunication and stay aligned with human
preferences. We use the Dialogue NLI dataset [103], which con-
sists pairs of dialog turns with entailment, contradiction, and
neutral labels to probe for natural language inference. We mod-
ify the utterance pairs to involve two speakers instead of one.

multi woz : Every utterance in a conversation can be considered as
an action or a dialog act performed by the speaker. A speaker
could be making a request, providing information, or simply
greeting the system. MultiWOZ 2.1 [30] is a dataset of multi-
domain, goal-oriented conversations. Human turns are labeled
with dialog acts and the associated domains (hotel, restaurant,
etc), which we use to probe for natural language understanding.

sgd : Tracking user intent is also important for generating appropri-
ate responses. The same intent is often active across multiple di-
alog turns since it takes more than one turn to book a hotel, for
example. Determining user intent requires reasoning over mul-
tiple turns in contrast to dialog acts which are turn-specific. To
probe for this task, we use intent labels from the multi-domain,
goal-oriented Schema-Guided Dialog dataset [71].

wnli : Endowing neural models with commonsense reasoning is an
ongoing challenge in machine learning [85]. We use the Wino-
grad NLI dataset, a variant of the Winograd Schema Challenge
[49], provided in the GLUE benchmark [99] to probe for com-
monsense reasoning. WNLI is a sentence pair classification task
where the goal is to identify whether the hypothesis correctly
resolves the referent of an ambiguous pronoun in the premise.

snips : The Snips NLU benchmark [19] is a dataset of crowdsourced,
single-turn queries labeled for intent. We use this dataset to also
probe for intent classification.

scenariosa : An understanding of sentiment and emotions is cru-
cial for building social, human-centered conversational agents.
We use ScenarioSA [110] as a sentiment classification probing
task. The dataset is includes multi-turn, open-ended dialogs
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Dataset |Train| Example Classes Label

TREC 5.5K [Usr1]: Why do heavier objects travel
downhill faster?

entity, number
description,
location, . . .

description

Dialogue
NLI

310K
[Usr1]: I go to college part time.
[Usr2]: You are a recent college gradu-
ate looking for a job.

entail,
contradict,
neutral

contradict

MultiWOZ 8.5K

[Usr1]: I need to book a hotel.
[Usr2]: I can help you with that. What
is your price range?
[Usr1]: That doesn’t matter as long as
it has free wifi and parking.

hotel-inform,
taxi-request,
general-thank,
. . .

hotel-
inform

Schema-
Guided

16K
[Usr1]: Help me find a restaurant.
[Usr2]: Which city are you looking in?
[Usr1]: Cupertino, please.

find-restaurant,
get-ride,
reserve-flight,
. . .

find-
restaurant

SNIPS 14K [Usr1]: I want to see Outcast.

search-screening,
play-music,
get-weather,
. . .

search-
screening

Winograd
NLI

0.6K

[User1]: John couldn’t see the stage
with Billy in front of him because he
is so tall.
[User2]: John is so tall.

entail,
contradict

contradict

ScenrioSA 1.9K

[Usr1]: Thank you for coming, officer.
[Usr2]: What seems to be the problem?
[Usr1]: I was in school all day and
came home to a burglarized apart-
ment.

positive,
negative,
neutral

negative

DailyDialog
Topic

0.9K

[Usr1]: I think Yoga is suitable for me.
[Usr2]: Why?
[Usr1]: Because it doesn’t require a lot
of energy.
[Usr2]: But I see people sweat a lot do-
ing Yoga too.

ordinary life,
work, school,
tourism, politics,
relationship, ...

ordinary
life

Table 5: Examples from the selected probing tasks.
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with turn-level sentiment labels. ScenrioSA includes natural in-
teractions that often require understanding conversational con-
text to correctly identify sentiment.

dailydialog topic : The DailyDialog dataset comes with conversation-
level annotations for 10 diverse topics such as ordinary life,
school life, relationships, and health. Inferring the topic of con-
versation is an important skill that could help dialog systems
stay consistent and on topic. We use the examples from the Dai-
lyDialog test set to create this probing task.

3.5 results

3.5.1 Quality of encoder representations

The results from our probing experiments are presented in tables 6

and 7. We calculate an average score to summarize the overall accu-
racy on all tasks. Here we explore whether the encoder learns high
quality representations of the conversation history. We focus on en-
coder states because these representations are passed on to the de-
coder and used for generation (figure 4). Thus, effectively encoding
information in the encoder states is crucial for dialog generation.

Figure 5 shows the difference in average probing accuracy between
the word embeddings and the encoder state for each model. We can
see that the word embeddings outperform the encoder state for all
the small models. This performance gap is most pronounced for the
Transformer but is non-existent for the large recurrent models.

One possible explanation is that the encoder highlights informa-
tion relevant to generating dialog at the cost of obfuscating or losing
information relevant to the probing tasks – given that the goals of
certain probing tasks do not perfectly align with natural dialog gener-
ation. For example, the DailyDialog dataset contains examples where
a question is answered with another question (perhaps for clarifica-
tion). The TREC question classification task does not account for such
cases and expects each question to have a specific answer type. This
explanation is supported by the observation that the information in
the word embeddings and encoder state is not necessarily redundant.
The combined representations often outperform using either one sep-
arately (albeit by a minute amount).

Regardless of the reason behind this gap in performance, multiple
models still fail to effectively encode information about the conversa-
tion history that is already present in the word embeddings.
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Model TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe Mini 83.8 70.8 91.9 71.2 98.0 48.2 75.3 54.0 74.2

RNN
Word Embs. 79.0 63.7 88.1 63.2 95.7 52.2 66.7 55.4 65.7
Enc. State 80.4 55.4 69.7 47.3 93.4 49.4 62.5 56.8 60.2
Combined 81.9 60.0 82.4 60.9 95.3 49.9 64.8 57.3 64.4

RNN + Attn
Word Embs. 75.6 64.5 87.5 65.9 96.5 50.1 62.6 55.1 64.9
Enc. State 77.2 59.5 80.0 57.0 95.1 49.9 64.7 59.0 67.8
Combined 79.2 64.6 86.3 66.8 96.7 51.3 65.3 58.5 71.1

Transformer
Word Embs. 81.2 71.6 90.9 70.9 97.7 48.6 74.4 62.3 74.7
Enc. State 67.9 54.1 68.7 47.2 85.1 49.4 57.4 55.4 60.7
Combined 81.5 71.3 91.2 70.3 97.9 50.1 72.8 59.6 74.3

Table 6: Accuracy on probing tasks for small models trained with random
initialization on DailyDialog. Best Avg result for each model under-
lined. Best Avg result in bold.

Model TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe 86.5 70.3 91.6 70.5 97.8 49.9 75.1 54.3 74.5

RNN
Word Embs. 84.0 71.6 91.4 69.8 98.1 51.4 72.0 52.3 73.8
Enc. State 84.6 66.8 89.9 72.9 97.2 48.6 67.8 61.0 73.6
Combined 85.6 69.4 91.1 74.0 97.6 49.6 69.1 61.4 74.7

RNN + Attn
Word Embs. 83.4 71.4 91.8 70.1 97.9 49.5 72.1 55.7 74.0
Enc. State 85.0 65.6 90.0 73.6 97.2 47.5 70.4 63.0 74.0
Combined 86.6 70.0 92.0 75.9 97.7 48.8 73.5 62.3 75.9

Transformer
Word Embs. 89.4 70.4 91.4 70.3 98.3 51.4 71.7 51.5 74.3
Enc. State 71.3 58.5 70.7 57.5 88.5 50.2 58.8 64.1 65.0
Combined 90.0 70.2 91.1 70.5 98.1 50.4 72.4 62.9 75.7

Table 7: Accuracy on probing tasks for large, Wikipedia pre-trained models
finetuned on DailyDialog. Best Avg result for each model under-
lined. Best Avg result in bold.
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Figure 5: Bar plot showing difference between average scores for word em-
beddings and encoder states.

Figure 6: Bar plot showing difference between average scores for combined
representations (word embeddings + encoder state) and GloVe
baseline.

Figure 7: Bar plot showing difference between average scores for models
trained on ordered and shuffled data.
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3.5.2 Probing for conversational understanding

In this section, we compare the probing performance of the ordered
dialog models to the simple baseline of averaging GloVe word embed-
dings. Here we use the combined representations since they achieve
the best performance overall and can act as a proxy for the informa-
tion captured by the encoder about the conversation history.

Since our probing tasks test for conversational skills important for
dialog generation, we would expect the dialog models to outperform
GloVe word embeddings. However, this is generally not the case. As
figure 6 shows, the GloVe baseline outperforms the small recurrent
models while being on par with the large pre-trained models in terms
of average score. Tables 6 and 7 show that this pattern also generally
applies at the task level, not just in terms of average score.

Closer inspection, however, reveals one exception. Combined repre-
sentations from both the small and large models consistently outper-
form GloVe on the DailyDialog Topic task. This is the only task that is
derived from the DailyDialog test data, which follows the same distri-
bution as the dialogs used for training the models. This suggests that
lack of generalization can partly explain the weak performance on
other tasks. It is also worth noting that DailyDialog Topic is labeled
at the conversation level rather than the turn level. Thus, identifying
the correct label does not necessarily require reasoning about turn-
level interactions (unlike DNLI, for example).

The poor performance on the majority of tasks, relative to the sim-
ple GloVe baseline, leads us to conclude that standard dialog mod-
els trained from scratch struggle to learn the basic conversational
skills examined here. Large, pre-trained models do not seem to mas-
ter these skills either with performance on par with the baselines.

3.5.3 Effect of dialog structure

Tables 8 and 9 summarize the results of the perturbation experiments.
Figure 7 shows the difference in average performance between the
ordered and shuffled models. We show results for the encoder state
since it is important for encoding the conversation history, as dis-
cussed in section 3.5.1. The encoder state is also sensitive to word
and utterance order, unlike averaging the word embeddings. So if a
model can fully exploit the dyadic, turn-taking, structure of dialog,
this is likely to be reflected in the encoder state representations.

In most of our experiments, models trained on ordered data out-
performed models trained on shuffled data, as expected. We can see
in figure 7, that average scores for ordered models were often higher
than for shuffled models. However, the absolute gap in performance
was at most 2%, which is a minute difference in practice. And even
though ordered models achieved higher accuracy on average, if we
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Model Test PPL TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority - 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe Mini - 83.8 70.8 91.9 71.2 98.0 48.2 75.3 54.0 74.2

RNN
Ordered 27.2 80.4 55.4 69.7 47.3 93.4 49.4 62.5 56.8 60.2
Shuffled 29.0 77.3 55.7 71.2 46.4 92.8 51.5 57.0 56.8 59.7

RNN + Attn
Ordered 26.0 77.2 59.5 80.0 57.0 95.1 49.9 64.7 59.0 67.8
Shuffled 28.8 80.2 60.8 80.8 60.7 92.9 50.8 57.9 59.3 67.9

Transformer
Ordered 29.3 67.9 54.1 68.7 47.2 85.1 49.4 57.4 55.4 60.7
Shuffled 30.8 58.6 52.1 62.6 46.4 83.5 50.4 53.5 63.8 58.9

Table 8: Perplexity and accuracy on probing tasks for small models trained
with random initialization on ordered and shuffled dialogs from
DailyDialog. Results shown are for probing the encoder state. Best
Avg result for each model underlined.

Model Test PPL TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority - 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe - 86.5 70.3 91.6 70.5 97.8 49.9 75.1 54.3 74.5

RNN
Ordered 17.0 84.6 66.8 89.9 72.9 97.2 48.6 67.8 61.0 73.6
Shuffled 19.1 85.4 65.1 89.5 69.0 97.3 50.5 64.7 65.4 73.4

RNN + Attn
Ordered 16.5 85.0 65.6 90.0 73.6 97.2 47.5 70.4 63.0 74.0
Shuffled 19.6 84.1 64.9 89.9 71.1 96.6 50.3 64.7 65.4 73.4

Transformer
Ordered 19.8 71.3 58.5 70.7 57.5 88.5 50.2 58.8 64.1 65.0
Shuffled 21.4 66.1 58.0 68.8 58.0 89.6 49.0 56.3 64.2 63.8

Table 9: Perplexity and accuracy on probing tasks for large, Wikipedia pre-
trained models finetuned on ordered and shuffled dialogs from Dai-
lyDialog. Results shown are for probing the encoder state. Best Avg
result for each model underlined.
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Models TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Scratch -0.72 -0.61 -0.65 -0.43 -0.82 -0.24 -0.99 0.40 -0.75

Pretrained -0.76 -0.80 -0.74 -0.81 -0.71 0.61 -0.93 0.65 -0.76

All -0.55 -0.84 -0.71 -0.87 -0.63 0.30 -0.73 -0.64 -0.92

Table 10: Table showing that probing performance of the encoder state neg-
atively correlates with test perplexity. Results imply that models
with lower perplexity (better data fit) correlate with better probing
performance.

examine individual tasks in tables 8 and 9, we can find instances
where the shuffled models outperformed the ordered ones for each
of the tested architectures, sizes, and initialization strategies.

The average difference in test perplexity between all the ordered
and shuffled models was less than 2 points, suggesting that model fit
and predictions are not substantially different when training on shuf-
fled data. We evaluated all the models on the ordered DailyDialog
test set to calculate perplexity. The minimal impact of shuffling the
training data suggests that dialog models do not adequately leverage
dialog structure during training. Our results show that most of the in-
formation captured when training on ordered dialogs is also learned
when training on shuffled dialog.

3.6 limitations

Some of our conclusions assume that probing performance is indica-
tive of performance on the end-task of dialog generation. Yet it could
be the case that certain models learn high quality representations for
probing but cannot effectively use them for generation, due to a weak-
ness in the decoder for example. To address this limitation, future
work could examine the relationship between probing performance
and human judgements of conversation quality. Belinkov [6] suggests
more research on the causal relation between probing and end-task
performance is required to address this limitation.

However, it is reasonable to assume that capturing information
about a certain probing task is a pre-requisite to utilizing informa-
tion relevant to that task for generation. For example, a model that
cannot identify user sentiment is unlikely to use information about
user sentiment for generation. We also find that lower perplexity (bet-
ter data fit) is correlated with better probing performance (table 10),
suggesting that probing is a valuable, if imperfect, analysis tool for
open-domain dialog systems.
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3.7 conclusion

We have used probing to shed light on the conversational understand-
ing of neural dialog models. Our findings suggest that standard neu-
ral dialog models suffer from many limitations. They do not effec-
tively encode information about the conversation history, struggle
to learn basic conversational skills, and fail to leverage the dyadic,
turn-taking structure of dialog. These limitations are particularly se-
vere for small models trained from scratch on dialog data but occa-
sionally also affect large pre-trained models. Addressing these lim-
itations is an interesting direction of future work. Models could be
augmented with specific components or multi-task loss functions to
support learning certain skills. Future work can also explore the rela-
tionship between probing performance and human evaluation.
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4
L O O K I N G A H E A D

This thesis has presented approaches for building social and inter-
pretable dialog systems. We argued that social skills are a key compo-
nent of human intelligence and showed that social dialog systems
trained with human-centered objectives can lead to better human-
AI interaction (chapter 2). We also argued for the importance of in-
terpretability in assessing, evaluating, and improving deep learning
models and showed that neural dialog models still struggle with ba-
sic conversational skills (chapter 3). In closing, this chapter offers a
few directions for future work.

4.1 towards social dialog

4.1.1 Social objectives

In chapter 2, we trained social dialog systems by optimizing for a
handful of simple objectives such as asking more question and avoid-
ing toxicity and repetition. But social behavior is challenging to define
and encompass within a few reward functions. Future work could ex-
plore more complex, multimodal social signals for improving conver-
sation quality and user engagement. There have already been some
attempts to improve dialog systems by learning from implicit human
preferences [42] and conditioning on subtle social cues from facial
expressions [39] and acoustic information [13].

4.1.2 Hierarchical reinforcement learning

The VHRL approach we presented in chapter 2 applied the REIN-
FORCE algorithm at different decision-making components (utter-
ance level vs word level) to achieve hierarchical control. More power-
ful alternatives to REINFORCE, such as proximal policy optimization
(PPO) [79], can also be applied hierarchically to extend our proposed
approach and learn more complex rewards.

We only experiment with variational dialog models [83] which
learn a continuous latent variable z as the utterance-level or man-
ager decision. Future work can also apply hierarchical reinforcement
learning more generally to models that make discrete manager deci-
sions. For example, HRL can be used to improve models that predict
and condition on a set of dialog acts for generation [76]. This setting
might be more appropriate for applying HRL since reasoning over a
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limited discrete action space is more tractable than a large continuous
one [54].

4.1.3 Social commonsense

The definition we proposed for social intelligence in section 1.3 em-
phasized both understanding and behavior. However, our approach
in chapter 2 only focused on tuning model behavior, not understand-
ing. Future work can experiment with using HRL to better condition
on and reason over external knowledge such social commonsense
knowledge [78, 106] or external knowledge bases [58] or knowledge
graphs.

4.2 towards interpretable dialog

4.2.1 More probing

In chapter 3, we only experimented with a limited number of model
architectures, datasets, and training objectives. Whether our results
generalize across these different modeling decisions remains an open
question.

Future work can also use our results to propose modifications to di-
alog systems and remedy the limitations we highlighted. For example,
a multitask objective that incorporates the probing tasks into dialog
generation might support the learning of certain conversational skills.
Belinkov [6] used a similar approach to promote the morphological
awareness of a neural machine translation decoder leading to higher
BLEU scores.

Our analysis only focused on high-level probing tasks and con-
versational skills. Probing can also be used to understand the low-
level linguistic information captured by dialog models at a more fine-
grained level. Previous studies have analyzed auto-encoders’ ability
to encode information about the word order, word content, and sen-
tence length of the input [1]. However, a similar analysis has not been
applied to dialog systems.

4.2.2 Probing for causal effects

Although probing is a valuable tool for analyzing open-domain dia-
log systems, it still remains unclear how probing performance corre-
lates with human judgements of conversation quality, as discussed in
chapter 3. Another interesting questions is whether there is a causal
effect behind this relationship. We hope that future work will shed
more light on this issue and explore the potential of probing perfor-
mance as an evaluation metric.
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